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1 Introduction5

Soil plays a pivotal role in maintaining rich and abundant biodiversity.6

Climate change poses significant challenges to the soil ecosystem, with pro-7

found implications for many aspects of life, from survival of microbial organ-8

isms to plant phenology [1] [4]. Yet, robust statistical approaches to precisely9

quantify the changes in various soil parameters has been lacking. Our study10

dissects the effect of climate change on abiotic aspects of soil ecology — soil11

moisture and temperature.12

To mimic climate change, warmer temperatures and earlier snowmelt were13

experimentally simulated through the use of passive heating chambers and14

snow removal in the montane meadows[4]. Soil moisture and temperature15

measurements were recorded hourly for four treatments: (1) control, C; (2)16

heating, H; (3) heating + snow removal, HSR; and (4) snow removal, SR,17

with 3 replicate series in each treatment [4]. Our interest lies in establish-18
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ing meaningful comparisons among groups of series. However, due to the19

presence of temporal dependence as well as the possibility of non-negligible20

correlations among series, the classical statistical inferential methods are not21

applicable. A classical one-way anova approach is inadequate here because it22

reduces the behavior of a full sequence of observations to a single mean value23

and does not account for the dependence structure. As a solution, a non-24

parametric permutation test was suggested to identify differences between25

groups of time series in our same experimental context by Sherwood et al26

[4]. While the permutation test considered the behavior of the entire curve,27

it is limited by the number of possible permutations given the small number28

of series in each group and fails to utilize the inherent functional nature of29

the series. The elements in each of our time series are realizations of a con-30

tinuous process evaluated at discrete time intervals, and thus can reasonably31

be considered functional rather than as a vector of measurements. In this32

paper, we propose an anova test for functional data to detect the effect of33

climate change on soil ecology. The functional anova approach overcomes the34

limitations of classical one-way anova by considering features of the whole35

curve rather than just the mean, and provides a useful method of obtaining36

p-values through parametric bootstrap. Since many data can be considered37

functional in nature, the approach presented in this paper is widely applica-38

ble.39

An overview of the contents of this paper are as follows. After giving a40

brief description of the data in Section 2, the smoothing procedure used for41

converting discrete data into functions is provided in Section 3.1. Section 3.242

gives an overview of functional anova, and Section 3.3 provides its practical43
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implementation. The results are presented and discussed in Section 4, and a44

small simulation study regarding statistical power is discussed in Section 5.45

The major conclusions of our study are summarized in Section 6.46

2 Data47

The data consist of soil temperature and moisture measurements taken48

from a sagebrush meadow at an elevation of 2100 m in Grand Teton National49

Park, WY, and were collected by Dr. Diane Debinski’s lab. Using a replicated50

block design, four treatments were applied: (1) control, C; (2) heating, H; (3)51

heating + snow removal, HSR; and (4) snow removal, SR. For each treatment,52

three replicates were established in 8x8 plots geographically: east, center, and53

west. Soil temperature was obtained at a depth of 5cm, and soil moisture was54

obtained at a depth of 25cm [4]. The measurements were taken hourly over a55

period of 5 months, from May 27, 2011 to September 27, 2011. In total, there56

were 2,954 time points for which temperature and moisture measurements57

were collected for each of the replicates in the four treatments. Some of58

these data are missing values, for which imputation is discussed at the end59

of Section 3.1. The raw soil moisture and temperature time series for each60

of the treatments are given in Figure 1.61
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3 Methods62

3.1 Data Pre-processing63

Although data may be functional by nature, it is typically collected as64

sets of discrete quantities. Thus, the first task in our analysis is to convert65

the discrete measurements of temperature and moisture into functional form.66

Since there is error associated with the measurements, the task of smoothing67

is vital for obtaining sets of purely functional curves that represent the be-68

havior of the data without interpolation [3]. Smooth curves are constructed69

as a linear combination of K independent basis functions, with careful con-70

sideration given to the choice of basis function. Let x(t) be the functional71

representation of a series as a function of time, t. Then, the basis expansion72

of x(t) is given by73

x(t) =
K∑
k=1

ckϕk(t) (1)

where ϕk is the kth basis function. The choice of the bases functions depends74

on the underlying features of the data we wish to represent. Fourier bases75

are commonly used for cyclical data, and B-spline bases are commonly uti-76

lized for non-cyclical data. Examination of the data given in Figure 1 reveals77

cyclical pattern in temperature time series for which we choose a Fourier78

basis. Since the moisture time series lacks any such periodicity, we will use79

a B-spline basis. The number of basis, K, is often obtained by minimizing80

the Generalized Cross Validation (GCV) criterion developed by Craven and81

Wahba [6]. Since the replicate curves within a treatment can be considered82

realizations of a common process, we minimize the sum of the GCV obtained83
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from the three curves within a treatment. For our data, complications arise84

from this minimization procedure because the GCV continually decreases85

as number of basis is increased. A basis number that is too large has high86

computational cost and overfits the data. We wish to obtain the optimal87

number of bases such that the general behavior of the data is retained in88

the functions without interpolating hourly variation. Thus, an acceptably89

smooth fit is achieved near the initial drop of the GCV criterion and is ver-90

ified by visual comparison of the smoothed curve to the original data. As91

an example, Figure 2 shows the GCV minimization procedure for moisture92

time series in the heating treatment, and a resulting smooth curve from the93

treatment. Each of the moisture time series are represented in functional94

form as a linear combination of 120 B-spline basis of the third order. Each95

of the temperature time series are represented in functional form as a lin-96

ear combination of 75 Fourier basis. Figure 3 gives the resulting functional97

curves for soil moisture and temperature post-smoothing.98

The raw data contain approximately 0.7% missing values sporadically99

throughout the 12 moisture and 12 temperature time series, and all time100

points contained at least one replicate that had a non-missing value. While101

the missing values do not prevent the application of smoothing or the subse-102

quent functional anova procedure, they pose problems with the GCV mini-103

mization procedure by producing NA values for the GCV criterion. In order104

to obtain the optimal basis number through the GCV criterion, we imputed105

the missing values in the following manner. For missing values in a time series106

with non-missing neighbors, we imputed by taking an average of its neigh-107

boring values. If a series contained a small sequence of missing values, we108
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imputed using values from the closest replicate series if available. If the two109

replicate series were equidistant from the series containing missing values,110

we imputed by taking the average of the values from the two replicates. The111

GCV minimization procedure from the previous paragraph was applied to112

the data augmented with the imputed missing values, and was subsequently113

smoothed for analysis.114

3.2 Functional ANOVA115

An anova test for functional data (fanova) is used to test equality of mean116

curves between groups. In the classical one-way anova approach, equality of117

means is rejected when the between group variability is larger than the within118

group variability at a prescribed significance level. This idea is extended to119

the functional context in the form of an asymptotic test. We begin by giving120

an overview of the fanova test proposed by Cuevas et al.[2], and then present121

some modifications to the procedure.122

Suppose we are interested in testing the equality of mean curves between123

m independent groups. For i = 1, . . . ,m and j = 1, . . . , ni, let xij(t) repre-124

sent the jth sample curve in the ith group as a function of time, t ∈ [a, b]. For125

each ith group, the ni sample curves may be considered realizations of a com-126

mon L2-process with mean µi(t) and covariance Ki(s, t) = Cov(Xi(s), Xi(t)).127

Additionally, define the functional sample mean curve of the ith group as128

x̄i.(t) =

ni∑
j=1

xij(t)

ni

(2)
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and the sample covariance of the ith group as129

K̂i(s, t) =

ni∑
j=1

[xij(s)− x̄i.(s)][xij(t)− x̄i.(t)]

ni − 1
(3)

The null hypothesis we wish to test has the form130

H0 : µ1(t) = µ2(t) = . . . = µm(t) = µ(t) (4)

The following result, which may be used to test H0, is presented by Cuevas131

et al. and a proof is provided in the same paper [2].132

Result: Asymptotic test for FANOVA (Cuevas et al. [2])133

Define Vn as134

Vn =
m∑
i<i′

ni∥x̄i.(t)− x̄i′.(t)∥2 (5)

where ∥.∥ represents the L2 norm. Let m be the number of groups, and135

n =
∑m

i=1 ni be the total number of sample curves. For i = 1, . . . ,m and136

j = 1, . . . , ni, assume that137

1. ni, n → ∞ such that ni

n
→ pi < ∞.138

2. xij(t) corresponds to independent samples from a common L2-process139

with mean 0 and covariance Ki(s, t).140

Then, under the null hypothesis, the asymptotic distribution of Vn coincides141

with the distribution of V such that142

V =
m∑
i<i′

∥Zi(t)− Cii′Zi′(t)∥2 (6)
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where Cii′ =
(

pi
pi′

)1/2

and Zi(t) are independent Gaussian processes with143

mean 0 and covariance Ki(s, t).144

To test H0, Cuevas et al. suggests the use of Vn as the test statistic and145

obtaining the empirical distribution of V through a parametric bootstrap146

procedure in which Zi(t) are generated from a Gaussian process with mean147

0 and covariance K̂i(s, t).148

In this paper, we propose an alternative test statistic that preserves the149

distributional properties of Vn, and has the added advantage that it allows150

for direct visualization and uncertainty quantification of differences between151

the mean curves of each group. Our proposed test statistic Tn is given by152

Tn =
m∑
i<i′

∥x̄i.(t)− x̄i′.(t)∥2 (7)

A notable change in the form of the test statistic is the absence of the ni153

multiplier in its formulation. This modification has implications both for the154

simulation procedure and the asymptotic behavior of Tn. In particular, let155

Zi be the mean curve obtained from ni Gaussian processes having mean 0156

and covariance K̂i(s, t). Then, the reference distribution of Tn is given by157

T =
m∑
i<i′

∥Zi(t)− Zi′(t)∥2 (8)

In practice, using Tn as the test statistic leads to analogous results as using158

Vn. However, the benefit of using Tn is twofold. First, Tn has an intuitive159

interpretation as the squared norm of the difference between pairwise sample160

mean curves. Second, the distances between the sample mean curves can161
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directly be compared to the distances between the simulated Zi(t) resample162

curves. The latter, which was not possible in the Cuevas et al procedure,163

allows us an additional tool besides the p-value to visually understand the164

significance of differences between mean curves.165

3.3 Parametric Bootstrap Procedure166

We provide here the details of the implementation of the functional167

anova test through a parametric bootstrap procedure. For i = 1, . . . ,m and168

j = 1, . . . , ni, recall that xij(t) represents the j
th sample curve in the ith group169

as a function of time, t ∈ [a, b]. For each ith group, the sample mean curve x̄i.170

and sample covariance K̂i(s, t) are given by Equation 2 and 3 respectively.171

For computation, the xij and x̄i. are rediscretized into a vector of length T .172

K̂i(s, t) is obtained using the rediscretized sample curves as a TxT sample173

covariance matrix. In the implementation of this procedure to our data, we174

used the number of basis functions involved in the smoothing procedure of175

our series as T. The following bootstrap procedure was then implemented for176

N = 2000 simulations.177

1. Calculate the test statistic, Tn =
∑m

i<i′ ∥x̄i.(t)−x̄i′.(t)∥2, using euclidean178

distance to approximate the L2-norm.179

2. For each ith group, generate ni sample curves from a Gaussian distribu-180

tion with mean 0 and covariance K̂i(s, t). The mean of the generated181

sample curves in the ith group is denoted by Z∗
i = (Z∗

i (t1), . . . , Z
∗
i (tT )).182

The Z∗
i are bootstrap resamples that approximate the continuous tra-183

jectories of Zi(t).184
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3. For l = 1, . . . , N , simulate Z∗
il as in the previous step.185

4. For l = 1, . . . , N , calculate Tl =
∑m

i<i′ ∥Z∗
il − Z∗

i′l∥2.186

5. Calculate the p-value = 1
N

∑N
l=1 I(Tl > Tn).187

The empirical distribution of Tl approximates the asymptotic distribution188

of the test statistic, Tn. Hence, the parametric bootstrap procedure provides189

a computationally pleasing method for obtain p-values for functional anova190

tests. Additionally, the Z∗
i represent the expected mean curves under the null191

hypothesis for each group. Thus, the N resamples of Z∗
l can be plotted and192

compared to the sample mean curves from the data to visually understand193

the significance obtained from the p-value. This could be particularly useful194

if there are major shifts in the behavior of the process over time. Such195

changes may not be reflected in the magnitude of the p-value, but would196

include important scientific information.197

4 Results and Discussion198

The functional anova procedure described in Section 3.3 is applied sep-199

arately to the temperature and moisture curves. Initially, we test for differ-200

ences between the 4 treatment groups. Since there are only 3 sample curves201

in each of the 4 treatment groups, it is possible that this test may suffer from202

a lack of power. To mitigate this issue, two additional tests are performed in203

which we combine treatments such that the groups contain 6 sample curves204

instead of 3. The new groups are defined below.205

First, curves are reassigned into two groups according to presence or206
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absence of snow removal. The combined snow removal group (S̃) contains 6207

sample curves from SR and HSR. The combined no snow removal (NS̃) group208

contains 6 sample curves from C and H. A functional anova test is then used209

to identify whether the combined snow removal group (S̃) is different from210

the combined no snow removal group (NS̃) for soil moisture and temperature.211

Next, curves are reassigned into two groups according to presence or ab-212

sence of heating. The combined heating group (H̃) contains 6 sample curves213

from H and HSR. The combined no heating (NH̃) group contains 6 sample214

curves from C and S. A functional anova test is then used to identify whether215

the combined heating group (H̃) is different from the combined no heating216

group (NH̃) for soil moisture and temperature.217

The results of the functional anova tests on the moisture and tempera-218

ture time series are presented in Section 4.1 and Section 4.2 respectively. In219

Section 4.3, we present our justification for splitting the time domain for the220

temperature series, and present the results for the subsequent fanova tests.221

Figures 4-16 depict the fanova procedure for all of the tests presented in222

this section. In them, we visualize the sample curves from the groups being223

tested, the bootstrap resample curves, and the empirical density under the224

null hypothesis. The bootstrap resample curves visualize the significance of225

differences between groups over time. When sample mean curves are located226

near the edge of the grey band formed by the resample curves, they indicate227

significant differences between the groups. As the sample mean curves move228

closer to the inside of the grey region, less significance is implied by the plot.229
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4.1 Moisture230

We conduct 3 different tests on the moisture sample curves based on the231

functional anova procedure. Particularly, we test for differences between the232

4 treatment groups, differences due to snow removal, and differences due to233

heating.234

For testing difference between the 4 treatment groups (Figure 4), the null235

hypothesis is given by236

H0 : µC = µH = µHSR = µSR (9)

where µC , µH , µHSR, µSR are the expected values of the L2-processes gener-237

ating the control (C), heating (H), heating + snow removal (HSR), and snow238

removal (SR) groups respectively. The test statistic, Tn = 0.513, corresponds239

to a p-value of 0.074 and provides moderate evidence against H0.240

For testing difference due to snow removal (Figure 5), the null hypothesis241

is given by242

H0 : µS̃ = µN S̃ (10)

where µS̃ and µN S̃ are the expected values of the L2-processes generating243

the combined snow removal (S̃) and combined no snow removal (NS̃) groups.244

The test statistic, Tn = 0.097, corresponds to a p-value of 0.007 and provides245

strong evidence against H0. There is significant evidence that differences246

due to snow removal exist in the moisture time series. The resample curves247

shown in Figure 5 confirm the significance of our test. The sample mean248

curves are near the edge of the grey band created by the bootstrap resample249
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curves, indicating strong evidence against the null hypothesis.250

To identify difference due to heating (Figure 6), the null hypothesis is251

given by252

H0 : µH̃ = µNH̃ (11)

where µH̃ and µNH̃ are the expected values of the L2-processes generating253

the combined heating (H̃) and combined no heating (NH̃) groups. The test254

statistic, Tn = 0.029, corresponds to a p-value of 0.288. There is no significant255

evidence of a difference due to heating in the moisture time series. This256

conclusion is confirmed by the resample curves shown in Figure 6. The sample257

mean curves are located well inside the grey band created by the bootstrap258

resample curves, indicating no evidence against the null hypothesis.259

4.2 Temperature260

We use the functional anova procedure given in Section 3.3 to test for261

differences between the 4 treatment groups, differences due to snow removal,262

and differences due to heating for temperature.263

For testing difference between the 4 treatment groups (Figure 7, the null264

hypothesis is given by265

H0 : µC = µH = µHSR = µSR (12)

where µC , µH , µHSR, µSR are the expected values of the L2-processes gen-266

erating the control (C), heating (H), heating + snow removal (HSR), and267

snow removal (SR) groups respectively. The test statistic, Tn = 542.731,268
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corresponds to a p-value of 0.150 and provides weak evidence against H0.269

For testing difference due to snow removal (Figure 8), the null hypothesis270

is given by271

H0 : µS̃ = µN S̃ (13)

where µS̃ and µN S̃ are the expected values of the L2-processes generating272

the combined snow removal (S̃) and combined no snow removal (NS̃) groups273

respectively. The test statistic, Tn = 78.092, corresponds to a p-value of274

0.064 and provides moderate evidence against H0.275

For testing difference due to heating (Figure 9), the null hypothesis is276

given by277

H0 : µH̃ = µNH̃ (14)

where µH̃ and µNH̃ are the expected values of the L2-processes generating278

the combined heating (H̃) and combined no heating (NH̃) groups respectively.279

The test statistic, Tn = 50.991, corresponds to a p-value of 0.168 and provides280

weak evidence against H0.281

4.3 Temperature: Domain Split282

A visually prominent moisture event in August corresponds to some in-283

teresting changes in the trajectories of the temperature mean curves. These284

mean curves for soil moisture and temperature are presented in Figure 10,285

and the approximate end of the large moisture event on August 24 is de-286

noted by the dotted line. Prior to the end of the large moisture event, the287

mean curves from snow removal and heating + snow removal treatments288

correspond to higher temperatures while the mean curves from heating and289
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control treatments correspond to lower temperatures. However, after the290

end of the large moisture event, the mean curves from heating and heat-291

ing + snow removal treatments correspond to higher temperatures while the292

mean curves from snow removal and control treatments correspond to lower293

temperatures. It is possible that the large moisture event corresponds to294

some changes in the processes from which the sample curves were generated,295

and we believe there is justification to split the domain into two parts and296

consider separate functional anova tests for each part. The domain is split297

on August 24, the approximate end of the large moisture event, and fanova298

tests were conducted separately on both parts of the domain to determine299

whether there are difference between the 4 treatment group, difference due to300

Snow Removal, and difference due to Heating. The first part of the domain301

contains significant differences due to snow removal but not heating, and the302

second part of the domain contains significant differences due to heating but303

not snow removal. Our findings suggest that the large moisture event may304

have corresponded to changes in the processes from which the sample curves305

were generated. Detailed results for each test are provided below.306

4.3.1 May, 28 - Aug, 24307

In this part, we consider fanova tests on temperature curves prior to308

August 24, the end of the large moisture event. The null hypothesis for309

testing differences between the 4 treatments (Figure 11) is given by310

H0 : µC = µH = µHSR = µSR (15)
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where µC , µH , µHSR, µSR are the expected values of the L2-processes gen-311

erating the sample curves in control (C), heating (H), heating + snow re-312

moval (HSR), and snow removal (SR) groups respectively. The test statistic,313

Tn = 328.627, corresponds to a p-value of 0.160 and provides weak evidence314

against H0315

For testing difference due to snow removal (Figure 12), the null hypothesis316

is given by317

H0 : µS̃ = µN S̃ (16)

where µS̃ and µN S̃ are the expected values of the L2-processes generating318

the combined snow removal (S̃) and combined no snow removal (NS̃) groups319

respectively. The test statistic, Tn = 62.240, corresponds to a p-value of320

0.024 and provides strong evidence against H0. There is significant evidence321

for difference due to snow removal prior to the end of the large moisture322

event.323

For testing difference due to heating (Figure 13), the null hypothesis is324

given by325

H0 : µH̃ = µNH̃ (17)

where µH̃ and µNH̃ are the expected values of the L2-processes generating the326

combined heating (H̃) and combined no heating (NH̃) groups respectively.327

The test statistic, Tn = 9.747, corresponds to a p-value of 0.549. There is no328

evidence of difference due to heating prior to the end of the large moisture329

event.330
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4.3.2 Aug, 24 - Sept 29331

In this part, we consider temperature measurements after August 24, the332

end of the large moisture event. The null hypothesis for testing differences333

between the 4 treatments (Figure 14) is given by334

H0 : µC = µH = µHSR = µSR (18)

where µC , µH , µHSR, µSR are the expected values of the L2-processes gen-335

erating the sample curves in control (C), heating (H), heating + snow re-336

moval (HSR), and snow removal (SR) groups respectively. The test statistic,337

Tn = 209.134, corresponds to a p-value of 0.106 and provides moderate evi-338

dence against H0.339

For testing difference due to snow removal (Figure 15), the null hypothesis340

is given by341

H0 : µS̃ = µN S̃ (19)

where µS̃ and µN S̃ are the expected values of the L2-processes generating342

the combined snow removal (S̃) and combined no snow removal (NS̃) groups343

respectively. The test statistic, Tn = 9.968, corresponds to a p-value of 0.336.344

There is no evidence of difference due to snow removal after the end of the345

large moisture event.346

For testing difference due to heating (Figure 16), the null hypothesis is347

given by348

H0 : µH̃ = µNH̃ (20)
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where µH̃ and µNH̃ are the expected values of the L2-processes generating the349

combined heating (H̃) and combined no heating (NH̃) groups respectively.350

The test statistic, Tn = 40.860, corresponds to a p-value of 0.018. There is351

significant evidence of difference due to heating after the end of the large352

moisture event.353

5 Simulation Study354

The functional anova procedure assumes that the number of sample355

curves (ni) is “large enough” for the asymptotic results given in Section 3.2356

to follow. An important issue that needs to be addressed in our application357

of functional anova is the potential loss of power for small ni. In this regard,358

a simulation study is conducted using sample curves with features similar to359

the moisture and temperature data. The goal of this study is to investigate360

the effect of the number of sample curves on the statistical power of the test.361

For simplicity, we consider functional anova tests between only 2 groups of362

curves. Let µ1 and µ2 be the expected values of the L2-processes generating363

sample curves for group 1 and group 2 respectively. If µ1 and µ2 differ, we364

are interested in whether the functional anova procedure can correctly reject365

the null hypothesis, H0 : µ1 = µ2.366

In order to recreate features similar to our data sets, µi(t) and Ki(s, t)367

are constructed from the moisture and temperature smoothed curves for the368

4 scenarios.369

1. In the first scenario, moisture sample curves are recreated such that370

µ1 and µ2 have a small difference. Let µ1 and µ2 be the mean of the371
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combined heating group and combined no heating group respectively372

from our data set. Then, K1(s, t) andK2(s, t) are the covariances of the373

combined heating group and combined no heating group respectively.374

2. In the second scenario, moisture sample curves are recreated with a375

more pronounced difference between µ1 and µ2. Let µ1 be the mean376

of the combined heating group with a 0.02 vertical shift, and µ2 be377

the mean of the combined no heating group. Let K1(s, t) and K2(s, t)378

be the covariances of the combined heating group and combined no379

heating group respectively.380

3. In the third scenario, temperature sample curves are recreated such381

that µ1 and µ2 have a small difference. Let µ1 and µ2 be the mean382

of the combined snow removal group and combined no snow removal383

group respectively from our data set. Let K1(s, t) and K2(s, t) be the384

covariances of the combined snow removal group and combined no snow385

removal group respectively.386

4. In the fourth scenario, temperature sample curves are recreated such387

that µ1 and µ2 have a more pronounced difference. Let µ1 be the mean388

of the combined snow removal group with a 1 unit vertical shift, and389

µ2 be the mean of the combined no snow removal group. Let K1(s, t)390

and K2(s, t) be the covariances of the combined snow removal group391

and combined no snow removal group as previously defined.392

The µi(t) and sample curves used to construct Ki(s, t) for each scenario are393

shown in Figure 17. For each scenario and ni = 6, 12, 18, 24, 30, ni sample394
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curves are generated from a Gaussian distribution with mean µi and covari-395

ance Ki(s, t). The functional anova procedure given in Section 3.3 is applied396

and repeated for 10,000 simulations. The proportion of the 10,000 simula-397

tions for which a p-value of less than 0.05 is obtained is given in Table 1.398

For all of the scenarios, the power of the test increases as the number399

of sample curves ni increases. When the difference between µ1(t) and µ2(t)400

is large (scenario 2 and 4), small ni are sufficient to identify the difference.401

However, when the difference between µ1(t) and µ2(t) is small (scenario 1402

and 3), larger ni are needed to identify the difference. An interesting dis-403

tinction in the simulation results between the scenarios is that, overall, the404

temperature curves (scenario 3 and 4) have larger proportions of simulated405

tests with significant p-values compared to the moisture curves (scenario 1406

and 2). This may be due to the larger covariance present in the moisture407

curves when compared to the temperature curves. Our simulation results408

indicate reasonable power for large and moderate number of sample curves.409

However, when the number of sample curves are small, the fanova tests lack410

power in identifying small differences. Additionally, even larger ni may be411

necessary to detect small difference if the covariance structure of the groups412

are large.413

6 Conclusion414

By utilizing the functional nature of our data and applying functional415

anova tests, we were able to identify effects due to simulated climate change416

on soil ecology. Particularly, significant differences were found in soil moisture417
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due to snow removal, and evidence suggests that the processes generating418

the temperature curves may have changed due to a large moisture event that419

occurred during course of the experiment. Prior to the cessation of the large420

moisture event, significant difference in soil temperature are evident due to421

snow removal but not heating. However, after the large moisture event,422

significant differences in soil temperature are evident due to heating but not423

snow removal.424

The functional anova approach is particularly useful in our application425

because it allows for identification of differences between groups of time series,426

and utilizes the behavior of the entire series. Additionally, the asymptotic427

fanova procedure allows us to forgo the usual one-way anova assumption of428

equal covariance, and the bootstrap procedure provides a computationally429

simple way to obtain p-values from which conclusions can be made. Since430

our approach relied on asymptotic results, the small number of sample curves431

per group may be cause for concern. Additionally, our analysis did not take432

into account any spatial dependence, which would be interesting to consider433

for future work.434
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8 Tables440

Table 1: Simulation Results giving the proportion of significant functional anova
tests at α = 0.05 for 10,000 simulations. ni denotes the number of sample curves
used in the fanova procedure

Scenario
ni 6 12 18 24 30

1 (Moist. Small Diff.) 0.235 0.385 0.550 0.691 0.817
2 (Moist. Large Diff.) 0.724 0.958 0.996 1.000 1.000

3 (Temp. Small Diff) 0.539 0.879 0.984 0.999 1.000
4 (Temp. Large Diff) 0.993 1.000 1.000 1.000 1.000
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9 Figures and Tables441

Figure 1: Left: 12 time series giving soil moisture by treatment. Right: 12 time
series giving soil temperature by treatment. Treatments applied are control (C),
heating (H), heating + snow removal (HSR), and snow removal (SR).

Figure 2: Left: Example plot used to obtain optimal number of basis functions
in smoothing procedure. Sum of GCV criterion for moisture curves in heating
treatment are plotted against number of b-spline basis functions used in smoothing.
Basis number of 120 is chosen to avoid over-fitting data. Right: Plot of one
functional curve (red) from heating treatment smoothed using 120 basis functions
of 3rd order overlaid on original time series (black).
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Figure 3: Left: Functional moisture curves smoothed using 3rd order b-spline
basis containing 120 elements. Right: Functional temperature curves smoothed
using fourier basis containing 75 elements. Treatments applied are control (C),
heating (H), heating + snow removal (HSR), and snow removal (SR).

Figure 4: Fanova test for identifying differences due to the treatments in the
moisture series. Left: Smooth Curves plotted by group, where the groups are
control (C), heating (H), heating + snow removal (HSR), and snow removal (SR).
Middle: Bootstrap resample curves shown in grey, and mean sample curves shown
in color. Right: Bootstrap density with the shaded region indicating the p-value.
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Figure 5: Fanova test for identifying differences due to snow removal in the mois-
ture series. Left: Smooth Curves plotted by group, where the groups are combined
snow removal (S̃) and combined no snow removal (NS̃). Middle: Bootstrap resam-
ple curves shown in grey, and mean sample curves shown in color. Right: Bootstrap
density with the shaded region indicating the p-value..

Figure 6: Fanova test for identifying differences due to heating in the moisture
series. Left: Smooth Curves plotted by group, where the groups are combined
heating (H̃) and combined no heating (NH̃). Middle: Bootstrap resample curves
shown in grey, and mean sample curves shown in color. Right: Bootstrap density
with the shaded region indicating the p-value.
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Figure 7: Fanova test for identifying differences due to the treatments in the
temperature series. Left: Smooth Curves plotted by group, where the groups are
control (C), heating (H), heating + snow removal (HSR), and snow removal (SR).
Middle: Bootstrap resample curves shown in grey, and mean sample curves shown
in color. Right: Bootstrap density with the shaded region indicating the p-value.

Figure 8: Fanova test for identifying differences due to snow removal in the tem-
perature series. Left: Smooth Curves plotted by group, where the groups are
combined snow removal (S̃) and combined no snow removal (NS̃). Middle: Boot-
strap resample curves shown in grey, and mean sample curves shown in color.
Right: Bootstrap density with the shaded region indicating the p-value.
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Figure 9: Fanova test for identifying differences due to heating in the temperature
series. Left: Smooth Curves plotted by group, where the groups are combined
heating (H̃) and combined no heating (NH̃). Middle: Bootstrap resample curves
shown in grey, and mean sample curves shown in color. Right: Bootstrap density
with the shaded region indicating the p-value.

Figure 10: Left: Smooth moisture series showing a large moisture event and
dotted line indicating the approximate end of the event, August 24. Right: Smooth
temperature series with the dotted line indicating the end of the large moisture
event. The domain for temperature will be split for further analysis at the dotted
line, and fanova tests are conducted separately on each part of the domain.
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Figure 11: Fanova test for identifying differences due to the treatments in the
temperature series between May 30, 2011 and August 24, 2011. Left: Smooth
Curves plotted by group, where the groups are control (C), heating (H), heating +
snow removal (HSR), and snow removal (SR). Middle: Bootstrap resample curves
shown in grey, and mean sample curves shown in color. Right: Bootstrap density
with the shaded region indicating the p-value.

Figure 12: Fanova test for identifying differences due to snow removal in the
temperature series between May 30, 2011 and August 24, 2011. Left: Smooth
Curves plotted by group, where the groups are combined snow removal (S̃), and
combined no snow removal (NS̃). Middle: Bootstrap resample curves shown in
grey, and mean sample curves shown in color. Right: Bootstrap density with the
shaded region indicating the p-value.
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Figure 13: Fanova test for identifying differences due to heating in the temperature
series between May 30, 2011 and August 24, 2011. Left: Smooth Curves plotted
by group, where the groups are combined heating (H̃), and combined no heating
(NH̃). Middle: Bootstrap resample curves shown in grey, and mean sample curves
shown in color. Right: Bootstrap density with the shaded region indicating the
p-value.

Figure 14: Fanova test for identifying differences due to the treatments in the tem-
perature series between August 24, 2011 and September 29, 2011. Left: Smooth
Curves plotted by group, where the groups are control (C), heating (H), heating +
snow removal (HSR), and snow removal (SR). Middle: Bootstrap resample curves
shown in grey, and mean sample curves shown in color. Right: Bootstrap density
with the shaded region indicating the p-value.
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Figure 15: Fanova test for identifying differences due to snow removal in the tem-
perature series between August 24, 2011 and September 29, 2011. Left: Smooth
Curves plotted by group, where the groups are combined snow removal (S̃), and
combined no snow removal (NS̃). Middle: Bootstrap resample curves shown in
grey, and mean sample curves shown in color. Right: Bootstrap density with the
shaded region indicating the p-value.

Figure 16: Fanova test for identifying differences due to heating in the temperature
series between August 24, 2011 and September 29, 2011. Left: Smooth Curves
plotted by group, where the groups are combined heating (H̃), and combined no
heating (NH̃). Middle: Bootstrap resample curves shown in grey, and mean sample
curves shown in color. Right: Bootstrap density with the shaded region indicating
the p-value.
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Figure 17: Population mean curves from which sample curves in simulation study
were generated are shown. Top Left: Scenario 1 showing small difference between
curves of 2 groups with features resembling moisture data. Top Right: Scenario 2
showing large difference between 2 groups with features resembling moisture data.
Bottom Left: Scenario 3 showing small difference between 2 groups with features
resembling temperature data. Bottom Right: Scenario 4 snowing large difference
between 2 groups with features resembling temperature data.
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