Bernoulli Distribution

$X=$ obtaining a "success" in experiment with only 2 outcomes -
"success", "failure". $P($ Success $)=p$.

$$
X \sim \operatorname{Bern}(p)
$$

- Probability Mass Function (PMF)

$$
p_{x}(x)=p^{\times}(1-p)^{1-x} \quad \text { for } x=0,1
$$

- Cumulative Distribution Function (CDF)

$$
F_{X}(t)=P(X \leq t)= \begin{cases}0 & \text { for } t<0 \\ 1-p & \text { for } 0 \leq t<1 \\ 1 & \text { for } t \geq 1\end{cases}
$$

- Expected Value: $E(X)=p$
- Variance: $\operatorname{Var}(X)=p(1-p)$

Geometric Distribution

$X=\#$ of trials until $1^{\text {st }}$ success where each trial has only 2
outcomes (success, failure). $P($ Success $)=p$.

$$
x \sim \operatorname{Geo}(p)
$$

- Probability Mass Function (PMF)

$$
p_{X}(x)=P(X=x)=(1-p)^{x-1} p \quad \text { for } x=1,2,3, \ldots
$$

- Cumulative Distribution Function (CDF)

$$
F_{X}(t)=P(X \leq t)= \begin{cases}0 & \text { for } t<1 \\ 1-(1-p)^{\lfloor t\rfloor} & \text { for } t \geq 1\end{cases}
$$

- Expected Value: $E(X)=\frac{1}{p}$
- Variance: $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

Binomial Distribution

$X=\#$ of "successes" in n trials, where each trial has only 2
outcomes - "success", "failure". $P($ Success $)=p$.

$$
X \sim \operatorname{Bin}(n, p)
$$

- Probability Mass Function (PMF)

$$
p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad \text { for } x=0,1,2, \ldots, n
$$

- Cumulative Distribution Function (CDF)

$$
F_{X}(t)=P(X \leq t)=\sum_{x=0}^{\lfloor t\rfloor}\binom{n}{x} p^{x}(1-p)^{n-x}
$$

- Expected Value: $E(X)=n p$
- Variance: $\operatorname{Var}(X)=n p(1-p)$

Poisson Distribution

$X=\#$ of events occurring during an interval.

$$
X \sim \operatorname{Pois}(\lambda)
$$

- Probability Mass Function (PMF)

$$
p_{x}(x)=\frac{e^{-\lambda} \lambda^{x}}{x!} \quad \text { for } x=0,1,2,3, \ldots
$$

where $\lambda>0$ is the rate parameter.

- Cumulative Distribution Function (CDF)

$$
F_{X}(x)=P(X \leq t)=\sum_{x=0}^{\lfloor t\rfloor} p_{X}(x)
$$

- Expected Value: $E(X)=\lambda$
- Variance: $\operatorname{Var}(X)=\lambda$

