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1 Introduction

The trend of increasing temperatures over time has widely been used to
signal evidence of climate change. In addition to an increase in mean surface
temperatures, there has been evidence of increases in both daily minimum and
maximum surface temperatures over the last 50 years [1]. Interestingly, the rate
of warming of daily minimum and maximum surface temperatures have not been
uniform. There has been a relatively larger increase in daily minimum surface
temperatures compared to daily maximum surface temperatures [1]. Thus, in-
creases in mean surface temperatures have coincided with decreases in diurnal
surface temperatures, where diurnal temperature is defined as the difference be-
tween daily maximum and minimum temperatures. Since the soil is home to a
diverse array of life, the detection of a similar pattern in soil temperature is of
scientific interest as it could have profound implications for the soil ecosystem.

To mimic climate change, warmer temperatures and earlier snowmelt were
experimentally simulated through the use of passive heating chambers and snow
removal in the montane meadows. Soil temperature measurements were recorded
for the aforementioned heating + snow removal treatment and for a control treat-
ment [3]. In this paper, we focus on dissecting the patterns in soil temperature
in the two treatments over time. Figure 1 shows the raw timeseries data over
the course of 22 days, from July 23, 2011 to August 14, 2011. The timeseries
exhibit trend, daily seasonality, and a severe structural break. The structural
break, which are common for temperature data, was likely due to a sudden shift
in weather patterns. In this project, we utilize a Bayesian dynamic linear model
that is appropriate for structural breaks in order to extract the trend and sea-
sonality in the data. While the trend will reflect the general trajectories of the
two series, the seasonal component can elucidate differences in the diurnal soil
temperatures between the control treatment and the heating + snow removal
treatment.
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2 Data

The data consist of soil temperature measurements taken from a sagebrush
meadow at an elevation of 2100 m in Grand Teton National Park, WY. In this
analysis, we focus on two treatments: (1) control, C; and (2) heating + snow
removal,HS that were established in 8x8 plots. The heating + snow removal
plot was established under a passive heating chamber and snow was removed
from the surface of the chamber. The control plot lacked the passive heating
chambers and snow was not removed from the soil’s surface. Soil temperature
was obtained hourly at a depth of 5cm over the course of 22 days, from July 23,
2011 to August 14, 2011 [3]. For computational reasons, we extracted every third
hourly observation. Thus, our analysis is based on timeseries composed of 176
observations from the control treatment and heating + snow removal treatment.

3 Methods

3.1 Model Rationale

Figure 1, the plot of the two soil temperature timeseries, show evidence of
trend, and seasonality. The cyclical pattern repeats daily with 8 observations in
each cycle. Hence, a local linear trend plus seasonal factor DLM seems appropri-
ate. The data does not show evidence of outliers, but there is a clear structural
break. In order to account for the structural break in the states, the system
evolution variances are given a heavy tailed, t-distribution with 2 degrees of free-
dom. The benefit of using a t-distribution is in its equivalent representation as
a scale mixture of Normal distributions, which allows us to use the standard
algorithms in DLM such as FFBS [2]. Suppose the ith component of the system
evolution variance is given by Wit, and Wit|λi, ν ∼ T (0, λi; ν) where ν is the
degrees of freedom, λi is the scale parameter, and t are the time indices. Then,
by introducing a latent variable ωit, we can give the equivalent expression:

Wit|λi, ωti ∼ N(0, λiωit)

ωit|ν ∼ IG

(
ν

2
,
ν

2

)
(1)

Additionally, we allow these state evolution variances along with it’s correspond-
ing latent variable ωit to be time varying. By doing so, we can use the posterior
means of the ωit over time to identify the time of the structural break [2]. Thus,
outliers in the latent variable ωit indicate that an abrupt change in the corre-
sponding state occurred at that time point.

3.2 Model

The DLM for the heating + snow removal and control timeseries are both
specified in the same way. For simplicity, we give the model for just one of the
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timeseries.
Let Yt be the soil temperature measurement at the tth time. Let t, ranging

from 1 through 176, be the time at which each soil temperature measurement
was taken.
For t = {1,2,..,176},
Observation Equation

Yt = Fθt + vt vt ∼ N(0, σ2) (2)

State Equation

θt = Gθt−1 + zt zt ∼ N(0,Wt)

θ0 ∼ N(0, 107I9×9)
(3)

Wt =



W1t 0 0 0 . . . 0
0 W2t 0 0 . . . 0
0 0 W3t 0 . . . 0
0 0 0 0 . . . 0
... . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0


9×9

The ith non-zero element of Wt is given by Wit, and is defined as below.

Wit = λiωit

ωit
ind∼ IG(1, 1)

(4)

F , G, and θt are defined as below:

F =
[
1 0 1 0 . . . 0

]
1×9

(5)

G =



1 1 0 0 . . . 0
0 1 0 0 . . . 0
0 0 −1 −1 . . . −1
0 0 1 0 0 0
... 0 0

. . . 0
...

0 0 0 0 1 0


9×9

(6)

θt =
[
µt βt αj αj−1 . . . α1 αs . . . αj+2

]
(7)

where j = t mod 8
Priors

σ2 ∼ IG
(
1, 1)

λi
ind∼ IG(1, 1)

(8)

The priors were chosen to be conjugate Inverse Gamma distributions. The shape
and scale parameters were chosen to be 1, and seem to give sufficient density
around plausible values of σ2 and λi. In Figure 5 and 6, overlays of the posterior
distributions of these parameters with the prior distributions show that the data
are able to overwhelm the prior.
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3.3 Model Fitting

We obtain samples from the posterior distributions of the parameters and states
given in the model by implementing a Gibbs sampler. The initial value for σ2 was
0.5, and the initial values for ωit and λi were sequences of 1 of the appropriate
dimension. The states are generated from their full conditional distribution given
the parameters and observations using the FFBS algorithm in the dlm package.
Then, the parameters are drawn from their full conditional distributions given
the states and observations. This successive sampling is repeated for 35,000
iterations. Thus, a 1 chain MCMC was run for 35,000 iterations with 5,000
iterations discarded as burn-in. Ultimately, this culminated in 30,000 MCMC
samples generated for the parameters and states. The trace plots indicated well
mixed chains. Additionally, the geweke diagnostics testing equality of means
between the first 10% and last 50% of the Markov chains were calculated, and
gave insignificant z-scores. Based on the trace plots and geweke diagnostics,
there is no indication of lack of convergence in the Markov chain.

4 Results

Posterior distributions for σ2, ωti, and λi were obtained using the MCMC.
The posterior distributions for σ2, λ1, λ2 and λ3 are shown in Figures 5 and 6.
In the local linear trend + seasonal factor model that was fit, the state evolu-
tion variances were time-variant. Thus, the latent variable ωit on the evolution
variances are also time-variant. Figure 4 shows a plot of the posterior means
over time for ω1t, ω2t, and ω3t, corresponding to the latent variable on the state
evolution variances for the local level, local growth rate, and seasonal compo-
nent of the states. In Figure 2, we present the smoothing estimates of the trend
and seasonal components for the control (C) and heating + snow removal (HS)
timeseries along with 95% credible bands. Figure 3 shows the same estimates
and 95% credible bands overlaied for comparison.

5 Discussion

The objective of this project was to fit a DLM that would account for a
severe structural break, and subsequently extract the trend and seasonality of
soil temperature timeseries from two treatments: control (C), and heating +
snow removal (HS). After fitting the DLM, the plot of the posterior means of
the latent variables ωit on the system evolution variances can be used to identify
the location of the structural breaks [2]. Particularly, the time points that have
large posterior means for ωit indicate that the corresponding system evolution
variance needed to be large at that time point in order to make a “jump” in
the structure of the state. Thus, high outliers in the ω1t, ω2t, and ω3t posterior
means will indicate structural breaks in the local level, local growth rate, and
seasonal component of the states respectively. Figure 4 shows high outliers in
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ω1t and ω2t for both treatments between August 2 and August 4, corresponding
to a structural break in the local level and local growth rate. This is the time
period at which the data experienced an unusual dip which is apparent in both
the raw data (Figure 1) and the trend estimate (Figure 2). Additionally, Figure
4 shows high outliers in ω3t for both treatments between August 4 and August
5, corresponding to a structural break in the seasonal component of the states.
This is the time period at which the amplitude of the seasonal component, shown
in Figure 2, slightly increases. It is worth noting that, although the amplitudes
of the seasonal components increased for both treatments over time, the changes
in amplitudes are not dramatic and a time-variant seasonal component may not
have been necessary for this model.

Aside from fitting a DLM that accounts for structural breaks, we compare
the estimated trend and seasonal component between the control and heating
+ snow removal treatments. Figure 2 shows estimates and 95% credible bands
of both trend and seasonality for the two treatments. The trend of soil temper-
ature for the two series indicate that the heating + snow removal treatment is
associated with higher temperatures than the control treatment. This difference
is apparent prior to the dip in the trend between August 2 and August 4, and
less apparent after the dip where the credible bands overlap. The seasonal com-
ponent estimates for the two series indicate a smaller amplitude for the heating
+ snow removal treatment compared to the control treatment. Thus, there is
some visual evidence that the heating + snow removal treatment is associated
with larger mean temperatures but smaller diurnal temperatures compared to
the control treatment.

6 Improvements and Future Work

As noted in the discussion, the amplitudes of the seasonal components had no
dramatic changes over time for either of the series. Thus, we could adapt the
model in this paper to a simpler DLM with fixed seasonality. Additionally, for
computational purposes, we limited the analysis to only 22 days out of the avail-
able 3 months of data. It would be interesting to extract the trend and seasonal
component for the full 3 months of data to see if the same patterns persist. We
may have also lost some information, particularly regarding the seasonal com-
ponent, by looking at only every third observation. Since our main objective
in looking at the seasonal component was to learn about diurnal temperatures,
having the full 24 hourly observations in a day could give more insight regarding
the maximum and minimum temperatures. Lastly, each treatment contained 2
additional soil temperature timeseries. For simplicity, we only looked at 1 series
from each of the 2 treatments. We should extract the trend and seasonality for
all of the series to see whether the finding of this paper hold, or whether they
were due to an anomaly in the measurements.
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7 Figures
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Figure 1: Plot of raw soil temperature measurements for control (C) and heating +
snow removal (HS) treatments.
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Figure 2: Estimated trend and seasonal component for the control (C) treatment is
given by dashed line, and its 95% credible band is shown in blue. Estimated trend and
seasonal component for the heating + snow removal (HS) treatment is given by solid
line, and its 95% credible band is shown in red.
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Figure 3: Estimated trend and seasonal component for the control (C) treatment is
given by dashed line, and its 95% credible band is shown in blue. Estimated trend and
seasonal component for the heating + snow removal (HS) treatment is given by solid
line, and its 95% credible band is shown in red.
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Figure 4: Posterior means for the latent variables ω1, ω2 and ω3 on the system evolu-
tions variances corresponding to local level, local growth rate, and seasonal component
of states.
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Figure 5: Posterior distribution of the observations variance (σ2) shown in grey. Prior
distribution shown in red
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Figure 6: In gray are the posterior distributions of λ1, λ2, and λ3 defined in the
evolution variances that correspond to local level, local growth rate, and seasonal
component respectively. Prior distribution shown in red
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Figure 7: Observations variance (σ2) traceplot
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Figure 8: Trace plots of λ1, λ2, and λ3 defined on the evolutions variances correspond-
ing to local level, local growth rate, and seasonal component of states
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Figure 9: Trace plots of latent variable ω11, ω21, and ω31 on the evolutions variances
corresponding to local level, local growth rate, and seasonal component of states at
time point t=1
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Figure 10: Trace plots of the states θ1, θ2, θ3 corresponding to local level, local growth
rate, and seasonal component at time point t=1
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