Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables with pdf:

$$
f_{X}(x)= \begin{cases}(\theta+1) x^{\theta} & \text { for } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We observe data values: $x_{1}=0.84, x_{2}=0.51, x_{3}=0.95$

1. Find the method of moments (MoM) estimate for θ
2. Find the maximum likelihood (MLE) estimate for θ

Answer:

1. Methods of Moments

Since there's only one unknown parameter, we will just use the $1^{\text {st }}$ moment. The $1^{\text {st }}$ (population) moment is $\mu_{1}=E(X)$

$$
\mu_{1}=E(X)=\int_{-\infty}^{\infty} x f(x) d x=\int_{0}^{1} x \cdot(\theta+1) x^{\theta} d x=(\theta+1) \int_{0}^{1} x^{\theta+1} d x=\left.\frac{\theta+1}{\theta+2} x^{\theta+2}\right|_{x=0} ^{1}=\frac{\theta+1}{\theta+2}
$$

The $1^{\text {st }}$ sample moment is $m_{1}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\bar{x}$
Set the $1^{\text {st }}$ (population) moment equal to $1^{\text {st }}$ sample moment, and solve for θ.

$$
\begin{aligned}
\mu_{1} & =E(X) \stackrel{\text { set }}{=} \bar{X}=m_{1} \\
& \Longrightarrow \frac{\theta+1}{\theta+2}=\bar{x} \\
& \Longrightarrow \theta+1=\theta \bar{x}+2 \bar{x} \\
& \Longrightarrow \theta-\theta \bar{x}=2 \bar{x}-1 \\
& \Longrightarrow \theta(1-\bar{x})=2 \bar{x}-1 \\
& \Longrightarrow \hat{\theta}_{M o M}=\frac{2 \bar{x}-1}{1-\bar{x}}
\end{aligned}
$$

The method of moments estimator for θ is $\hat{\theta}_{M o M}=\frac{2 \bar{X}-1}{1-\bar{X}}$
Based on our data, $\bar{x}=0.767$. Plugging this into our estimator,
The method of moments estimate for θ is $\hat{\theta}_{M o M}=\frac{2(0.767)-1}{1-0.767}=2.21$
2. Maximum Likelihood

The Likelihood function is

$$
L(\theta)=f\left(x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i}\right)=\prod_{i=1}^{n}(\theta+1) x_{i}^{\theta}=(\theta+1)^{n} \prod_{i=1}^{n} x_{i}^{\theta}
$$

The log-Likelihood functions is

$$
\begin{aligned}
l(\theta)=\log L(\theta)=\log \left((\theta+1)^{n} \prod_{i=1}^{n} x_{i}^{\theta}\right) & =n \log (\theta+1)+\theta \log \left(x_{1}\right)+\theta \log \left(x_{2}\right)+\ldots \theta \log \left(x_{n}\right) \\
& =n \log (\theta+1)+\theta \sum_{i=1}^{n} \log \left(x_{i}\right)
\end{aligned}
$$

We maximize the above \log-Likelihood function by set it's first derivative with respect to θ equal to 0 , and solving for θ.

$$
\frac{d}{d \theta} l(\theta)=\frac{d}{d \theta}\left[n \log (\theta+1)+\theta \sum_{i=1}^{n} \log \left(x_{i}\right)\right]=\frac{n}{\theta+1}+\sum_{i=1}^{n} \log \left(x_{i}\right)
$$

Setting $\frac{d}{d \theta} l(\theta)$ equal to 0 , we get,

$$
\begin{aligned}
\frac{d}{d \theta} l(\theta) & =\frac{n}{\theta+1}+\sum_{i=1}^{n} \log \left(x_{i}\right) \stackrel{\text { set }}{=} 0 \\
& \Longrightarrow \frac{n}{\theta+1}=-\sum_{i=1}^{n} \log \left(x_{i}\right) \\
& \Longrightarrow \theta+1=\frac{-n}{\sum_{i=1}^{n} \log \left(x_{i}\right)} \\
& \Longrightarrow \hat{\theta}_{M L E}=\frac{-n}{\sum_{i=1}^{n} \log \left(x_{i}\right)}-1
\end{aligned}
$$

$2^{\text {nd }}$ derivative test to check if we have maximum:

$$
\left.\frac{d^{2}}{d \theta^{2}} l(\theta)\right|_{\hat{\theta}}=\left.\frac{d}{d \theta}\left[\frac{d}{d \theta} l(\theta)\right]\right|_{\hat{\theta}}=\left.\frac{d}{d \theta}\left[\frac{n}{\theta+1}+\sum_{i=1}^{n} \log \left(x_{i}\right)\right]\right|_{\hat{\theta}}=\left.\frac{-n}{(\theta+1)^{2}}\right|_{\hat{\theta}}=\frac{-n}{(\hat{\theta}+1)^{2}}<0
$$

So, we have a maximum at $\hat{\theta}_{M L E}$.
Maximum likelihood estimator is $\hat{\theta}_{M L E}=\frac{n}{-\sum_{i=1}^{n} \log \left(X_{i}\right)}-1$
Plugging our data into the estimator (Note: That log represents the natural logarithm):
The maximum likelihood estimate for θ is $\hat{\theta}_{M L E}=\frac{-n}{\sum_{i=1}^{n} \log \left(x_{i}\right)}-1=\frac{-3}{\log (0.84)+\log (0.51)+\log (0.95)}-1=2.34$

