Lecture 1

Basic Probability and Set Theory

Manju M. Johny
STAT 330 - Iowa State University

Course Info

Course Info

STAT 330: Probability and Statistics for Computer Science General Info

- Instructor: Manju M. Johny
- Email: mjohny@iastate.edu
- Office Hours: $3: 10-4$ pm Mon/Thurs, 3406 Snedecor Hall
- TA: Quinglong Tian
- Email: qltian@iastate.edu
- Office Hours: 11-11:50am Tue/Fri, 3207 Snedecor Hall

Course Setup

1. Intro to probability \& random variables (7-8 weeks)
2. Applications of probability (~ 3 weeks)

- Markov chains
- Queueing Systems

3. Statistics (4-5 weeks)

Introduction

Probability and Statistics

Definitions

- Probability is a mathematical theory for modeling processes where outcomes occur randomly
- Statistics is learning about the real world from data under the assumption that the data was generated by a random process

Goals

1. Probability: model and assign probabilities to outcomes
2. Statistics: use probability to draw conclusions

Random Experiment

Random Experiment

Definition

A random experiment is an experiment (or process) for which outcome cannot be predicted with certainty

Example 1: Various random experiments

- A message can take two network routers to reach a recipient computer. We record the status of router 1 , the status of router 2, and the status of the recipient computer, where the status is either up (U) or down (D).
- Record the time for a web page to respond.
- Roll a die and record the face up.
- Flip a coin until you get a head. Record all the faces that your obtain.

Components of random experiment

Outcome

Definition

The outcome (ω) is the result of an experiment

Example 2: Outcomes

- Network Routers: $\omega=$ (router 1 down, router 2 down, recipient computer up) $=$ DDU
- Access web page: $\omega=$
- Roll a die: $\omega=$
- Toss coin until head: $\omega=$

Sample space

Definition

The sample space (Ω) is the set of ALL possible outcomes

Example 3: Sample spaces

- Network Routers: $\Omega=$ DDD, DDU, DUD, UDD, UUD, UDU, DUU, UUU
- Access web page: $\Omega=$
- Roll a die: $\Omega=$
- Toss coin until head: $\Omega=$
$|\Omega|=\#$ of outcomes in sample space.
For the network routers example, $|\Omega|=8$

Types of sample space

Sample space can be ...

- finite
- countable infinite \rightarrow discrete
- uncountable infinite \rightarrow not discrete

Example 4: Discrete/not discrete sample spaces

- Network Routers:
$\Omega=\{D D D, D D U, D U D$, UDD, UUD, UDU, DUU, UUU $\}$
\rightarrow discrete
- Access web page: $\Omega=(0, \infty)$
\rightarrow not discrete
- Roll a die: $\Omega=\{1,2,3,4,5,6\}$
\rightarrow discrete
- Toss coin until head: $\Omega=\{H, T H$, TTH, TTTH, $\cdots\}$
\rightarrow discrete

Event

Definition

An event $(A, B, C$, etc) is a collections of outcomes from the sample space that we are interested in. $A \subseteq \Omega$

Example 5: Events

- Network Routers: A message is transmitted successfully if at least one router is up and recipient computer is up. $A=$ successful transmission $=\{$ DUU, UDU, UUU $\}$
- Access web page: $B=$ More than 10 seconds $=(10, \infty)$
- Roll a die: $C=$
- Toss coin until head: $\mathrm{D}=$

Probability

Probability

- Let A be an event (set of outcomes from the sample space)
- Then, probability of event A is written as $P(A)$

Example 6:

- Consider event C as successful transmission in the Network Router example
- Suppose the chance that a message is successfully transmitted is 90%
- $\mathrm{P}(\mathrm{C})=$

To calculate probability of events, start with understanding set theory

Set Theory

Set Notation

Review symbols $\in, \notin, \subset, \subseteq, \supset, \supseteq$.

- If x is an element of set B, this is denoted $x \in B$
- If y is not an element of set B, this is denoted $y \notin B$
- If every element of set A is also an element of set B, then A is a subset of $B . A \subseteq B$

Let A and B be two events...

- Union $(\cup): A \cup B$ is the event consisting of all outcomes in A or in B or in both.

$$
A \cup B=\{\omega \mid \omega \in A \text { or } \omega \in B\}
$$

Set Notation Cont.

- Intersection (\cap) : $A \cap B$ is the event consisting of all outcomes simultaneously in A and in B.

$$
A \cap B=\{\omega \mid \omega \in A \text { and } \omega \in B\}
$$

- Complement (\bar{A}) : The complement of an event $A(\bar{A})$ is the event consisting of all outcomes not in A.

$$
\bar{A}=\{\omega \mid \omega \notin A\}
$$

Set Notation Cont.

- De Morgan's laws:

$$
(\overline{A \cup B})=\bar{A} \cap \bar{B} \quad(\overline{A \cap B})=\bar{A} \cup \bar{B}
$$

- Empty set $(\emptyset): \emptyset$ is a set containing no elements, usually denoted by $\}$. The empty set is a subset of every set:

$$
\emptyset \subseteq A
$$

- Disjoint/mutually exclusive sets: Sets A, B are disjoint if their intersection is empty:

$$
A \cap B=\emptyset
$$

- Pairwise disjoint sets: Sets $A_{1}, A_{2}, A_{3}, \cdots$ are pairwise disjoint if $A_{i} \cap A_{j}=\emptyset$ for any $i \neq j$

Venn Diagrams

Set Notation Cont.

Example 7:
$\Omega=\{1,2,3,4,5\}$
$A=\{1,2,3\}$
$B=\{2,3,4\}$
$C=\{4,5\}$

1. $\bar{A}=$
2. $A \cup B=$
3. $A \cap B=$
4. $A \cap C=$
5. Are A and B disjoint?
6. Are A and C disjoint?
7. Are A, B, C pairwise disjoint?

Kolmogorov's Axioms

Kolmogorov's Axioms

- Recall: $P(A)$ is the probability that event A occurs
- Want to assign probabilities to events as a measure of their likelihood of occurring
- A probability model is an assignment of numbers $P(A)$ to events $A \subseteq \Omega$ such that Kolmogorov's axioms are satisfied.

Kolmogorov's Axioms

1. $0 \leq P(A) \leq 1$ for all A
2. $P(\Omega)=1$
3. If $A_{1}, A_{2}, A_{3}, \cdots$ are pairwise disjoint, then

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots=\sum_{i} P\left(A_{i}\right)
$$

Kolmogorov's Axioms Cont.

Kolmogorov's axioms...

- Give the logical framework that probability assignment must follow
- But don't tell us what probabilities to assign to events

Example 8: Draw a single card from a standard deck of playing cards: $\Omega=\{$ red, black $\}$
Two different probability models are:

$$
\begin{array}{ll}
\frac{\text { Model } 1}{P(\Omega)=1} & \frac{\text { Model } 2}{P(\Omega)=1} \\
P(\text { red })=0.5 & P(\text { red })=0.3 \\
P(\text { black })=0.5 & P(\text { black })=0.7
\end{array}
$$

Both are valid probability models. However, real world experience tells us model 1 is more accurate for the scenario.

Consequences of Kolmogorov's Axioms

Let $A, B \subseteq \Omega$.
A. Probability of the Complementary Event:

$$
P(\bar{A})=1-P(A)
$$

$$
\text { Corollary: } P(\emptyset)=0
$$

B. Addition Rule of Probability

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

C. If $A \subseteq B$, then $P(A) \leq P(B)$.

Corollary: For any $A, P(A) \leq 1$.

Using Kolmogorov's axioms

There are 2 main approaches to assign probabilities to events at this point.

1. When we know events are disjoint (easy!).

- Let A be a collection of of k outcomes $\left(\omega_{1}, \ldots, \omega_{k}\right)$ that are all pairwise disjoint.
- Use Kolmogorov's axiom 3: $P(A)=P\left(\cup_{i=1}^{k} \omega_{i}\right)=\sum_{i=1}^{k} P\left(\omega_{i}\right)$.

Example 9: Roll a die. Suppose event A is rolling an even number. (Assume all numbers are equally likely $\rightarrow P(\omega)=\frac{1}{6}$ for all ω) $\Omega=\{1,2,3,4,5,6\}$
$A=\{2,4,6\}$

$$
\begin{aligned}
P(A) & =P(\text { " } 2 \text { " or " } 4 \text { " or " } 6 \text { " }) \\
& =P(\text { " } 2 \text { " } \cup \text { " } 4 \text { " } \cup \text { " } 6 \text { " }) \\
& =
\end{aligned}
$$

Using Kolmogorov's axioms cont.

2. When events may or may not be disjoint (harder).

- Start with known probability of some of the events.
- Use this information and Kolmogorov's axioms to deduce probabilities of other events.
- Drawing Venn diagrams will simplify the problem

Example 10: Suppose in a small college of 1000 students, 650 students own Iphones, 400 students own MacBooks, and 300 students own both.
Define events: $I=$ "owns Iphone", and $M=$ "owns MacBook".
Known
$P(I)=0.65$
$P(M)=0.40$
$P(I \cap M)=0.30$

Using Kolmogorov's axioms cont.

a. What is the probability of owning an Iphone or a MacBook?
b. What is the probability of owning neither an Iphone nor a MacBook?
c. What is the probability of owning only an Iphone? (ie. owning an iphone and no MacBook)
d. What is the probability of not owning an Iphone?

