Lecture 11
 Continuous Random Variables

Manju M. Johny

STAT 330 - Iowa State University

Continuous Random Variables

Discrete vs. Continuous R.Vs

Discrete Random Variable

Sample space (Ω) maps to finite or countably infinite set in \Re
Ex: $\{1,2,3\},\{1,2,3,4, \ldots\}$

Continuous Random Variable

 Sample space (Ω) maps to an uncountable set in \Re.Ex: $(0, \infty),(10,20)$

- We have already learned about discrete R.Vs (Lectures 5-10)
- All properties of discrete R.Vs have direct counterparts for continuous R.Vs
- Summations (Σ) used for discrete R.V's are replaced by integrals (\int) for continuous R.V's.

CDF of Continuous Random Variables

Definition

Let X be a continuous random variable. The cumulative distribution function (cdf) of X is

$$
F_{X}(t)=P(X \leq t)
$$

- All cdf properties discussed earlier still hold

1. $0 \leq F_{X}(t) \leq 1$
2. F_{X} is non-decreasing (if $a \leq b$, then $F_{X}(a) \leq F_{X}(b)$.
3. $\lim _{t \rightarrow-\infty} F_{X}(t)=0$ and $\lim _{t \rightarrow \infty} F_{X}(t)=1$
4. F_{X} is right-continuous with respect to t

- The cdf for continuous R.V is also continuous (not a step function like in discrete case)

PDF \longleftrightarrow CDF

Definition

For a continuous variable X with $\operatorname{cdf} F_{X}$, the probability density function (pdf) of X is defined as:

Properties of pdf:

$$
f(x)=F_{X}^{\prime}(x)=\frac{d}{d x} F_{X}(x)
$$

1. $f(x) \geq 0$ for all x,
2. $\int_{-\infty}^{\infty} f(x) d x=1$.

Additionally, for continuous R.V X,

- $F_{X}(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x$ for any $t \in \mathbb{R}$
- $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$ for any $a, b \in \mathbb{R}$
- $P(X=a)=P(a \leq X \leq a)=\int_{a}^{a} f(x) d x=0$ for any $a \in \mathbb{R}$

Examples

Continuous R.V Example

Example 1: Let Y be the time (in yrs) until the first major failure of a new disk drive. Suppose the probability density function (pdf) of X is given by

$$
f(y)= \begin{cases}0 & y \leq 0 \\ e^{-y} & y>0\end{cases}
$$

1. Check whether $f(y)$ is a valid density function.

We need to check the 2 properties of pdfs.
(1) $f(y)$ is non-negative function on \Re
(2) $\int_{-\infty}^{\infty} f(y) d y=1$
$\int_{-\infty}^{\infty} f(y) d y=$

Continuous R.V Example Cont.

2. What is the probability that the $1^{\text {st }}$ major disk drive failure occurs within the first year?
$P(Y \leq 1)=$

Continuous R.V Example Cont.

3. What is the probability that the $1^{\text {st }}$ major disk drive failure occurs before the first year?
$P(Y<1)=$

Continuous R.V. Example Cont.

4. What is the probability that the $1^{\text {st }}$ major disk drive failure occurs after the first year?

Continuous R.V. Example Cont.

5. What is the probability that the $1^{\text {st }}$ major disk drive failure occurs after first year but before second year?

Continuous R.V. Example Cont.

6. What is the cumulative distribution function (cdf) of Y ?

Continuous R.V Example Cont.

For Example 1, the pdf and cdf of Y are shown below.

Continuous R.V. Example Cont.

SHORT CUT: Use the cdf to calculate desired probabilities instead of integrating the pdf for each problem.

- Only need to integrate the pdf once to obtain the cdf
- Write any probability in terms of the cdf and plug in to solve Back to Example 1:
- $P(Y \leq 1)=$
- $P(Y>1)=$
- $P(1<Y<2)=$

Summary of Discrete \& Continuous R.V.

Discrete R.V.

- $\operatorname{Im}(X)$ finite or countable infinite
- CDF: $F_{X}(t)=P(X \leq t)$

$$
=\sum_{x \leq t} p_{X}(x)
$$

- PMF: $p_{X}(x)=P(X=x)$
- $E(h(X))=\sum_{x} h(x) p_{X}(x)$
- $E(X)=\sum_{x} x p_{x}(x)$
- $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

Continuous R.V.

- Im (X) uncountable
- CDF: $F_{X}(t)=P(X \leq t)$

$$
=\int_{-\infty}^{t} f(x) d x
$$

- PDF: $f_{X}(x)=\frac{d}{d x} F_{X}(x)$
- $E(h(X))=\int_{x} h(x) f(x) d x$
- $E(X)=\int_{-\infty}^{\infty} x f(x) d x$
- $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

