Lecture 12
 Uniform Distribution

Manju M. Johny

STAT 330 - Iowa State University

Continuous Distributions

Continuous Distributions

Common distributions for continuous random variables

- Uniform distribution

$$
X \sim \operatorname{Unif}(a, b)
$$

- Exponential distribution

$$
X \sim \operatorname{Exp}(\lambda)
$$

- Gamma distribution

$$
X \sim \operatorname{Gamma}(\alpha, \lambda)
$$

- Normal distribution

$$
X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Uniform Distribution

Uniform Distribution

If a random variable follows a uniform distribution, then the R.V has constant probability between values a and b .

$$
X \sim \operatorname{Unif}(a, b)
$$

- Probability Density Function (pdf)
- $\operatorname{Im}(X)=(a, b)$
- $f(x)= \begin{cases}\frac{1}{b-a} & \text { for } a<x<b \\ 0 & \text { otherwise }\end{cases}$

Uniform Distribution Cont.

- Cumulative Distribution Function (cdf)

$$
F_{X}(t)= \begin{cases}0 & \text { for } t \leq a \\ \frac{t-a}{b-a} & \text { for } a<t<b \\ 1 & \text { for } t \geq b\end{cases}
$$

- Expected Value: $E(X)=\frac{a+b}{2}$

$$
E(X)=\int_{a}^{b} \frac{x}{b-a} d x=\left.\frac{1}{b-a}\left(\frac{x^{2}}{2}\right)\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2}
$$

- Variance: $\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$

$$
\operatorname{Var}(X)=\int_{a}^{b}\left(x-\frac{a+b}{2}\right)^{2} \frac{1}{b-a} d x=\ldots=\frac{(b-a)^{2}}{12}
$$

Can also get variance by $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

Example

Uniform Distribution Example

Example 1: A basic (pseudo) random number generator creates realizations of $\operatorname{Unif}(0,1)$ random variables.
$X=$ number obtained from the random number generator.

1. What is $\operatorname{Im}(X)$?
2. Give the pdf and cdf of X

Uniform Distribution Example

3. What is the probability that it generates a number greater than 0.85 ?

Uniform Distribution Example

3. What is the probability that it generates a number between 0.1 and 0.85 ?
4. What is the expected value?
5. What is the variance?

Uniform Distribution Example

Example 2: Suppose X has a uniform distribution between 5 and 10. Calculate

1. $P(X<7)=$
2. $P(6<X<7)=$

Uniform Distribution Example

