Exam 2 - Ned, Oct 23

Coverage: Lecture 5 - 10

Bring 1 page formula/note sheet

(front & back)

Bring calculator

Lecture 14

Gamma Distribution

Manju M. Johny

STAT 330 - Iowa State University

1/9

Gamma Distribution

Gamma Distribution

Setup: The gamma distribution is commonly used to model the total time for a procedure composed of α independent occurrences, where the time between each occurrence follows $Exp(\lambda)$

where $\lambda > 0$ is there rate parameter, and $\alpha > 0$ is the shape parameter

• Probability Density Function (pdf)

 $f(x) = (0, \infty)$ $f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$ $\text{where } \Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \text{ is called the "gamma function"}.$

2/9

Gamma PDF

Figure 1: PDFs for gamma distribution with fixed λ and $\alpha = 0.5, 1, 1.5$

Gamma Distribution Summary

• Cumulative distribution function (cdf)

would use
$$F_X(t) = \int_0^t f(x) dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^t x^{\alpha-1} e^{-\lambda x} dx$$

- Expected Value: $E(X) \neq \frac{\alpha}{\lambda}$
- Variance: $Var(X) = \frac{\alpha}{\lambda^2}$

4/9

Examples

Gamma Distribution Example

Example 1: Compilation of a computer program consists of 3 blocks that are processed sequentially, one after the other. Each block is independent of the other blocks, and takes Exponential time with mean of 5 minutes. We are interested in the total TI TZ T3
EXP(1/5) EXP(1/5) EXP(1/5) compilation time.

Total compilation time modeled using Gamma distribution.

Define the R.V: T = total compilation time

Distribution of $T: T \sim Gamma(\alpha, \lambda) \equiv Gamma(?, ?) \equiv Gamma(3, \frac{1}{5})$

- What value should we use for α and λ ?
 - \bullet α is the number of independent occurrences (blocks) in the full procedure: $\alpha = 3$
 - Time for each occurrence (call this " T_i ") is exponential with mean 5 min. $E(T_i) = \frac{1}{\lambda} = 5 \rightarrow \lambda = \frac{1}{2}$

5/9

Gamma Distribution Example

 $\mathbb{R}^{1} \Rightarrow T = \text{total compilation time}$ $T \sim Gamma(3, \frac{1}{5})$ $\lambda = V_5$

1. What is the expected value of total compilation time?

$$E(T) = \frac{\alpha}{\lambda} = \frac{3}{(V_5)} = 15 \text{ min}$$

2. What is the variance of total compilation time?

$$Vax(T) = \frac{3}{(1/5)^2} = 75 \text{ min}$$

3. What is the probability for the entire program to be compiled in less than 12 minutes.

in less than 12 minutes.

$$P(T < 12) = \int_{12}^{12} f(x) dx = \int_{12}^{12} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx$$

$$= \int_{0}^{12} \frac{(1/5)^{3}}{\Gamma(3)} x^{3-1} e^{-\lambda x} dx$$

$$= \int_{0}^{12} \frac{(1/5)^{3}}{\Gamma(3)} x^{3-1} e^{-\lambda x} dx$$

$$= \int_{0}^{12} \frac{(1/5)^{3}}{\Gamma(3)} x^{3-1} e^{-\lambda x} dx$$
(repeated integration by parts)
$$= G_{170SS}$$

Poisson Approximation to Gamma Distribution

Gamma Distribution Example

- Could answer the previous question by using the Gamma CDF directly (requires repeated integration by parts)
- Instead, simplify Gamma probabilities by turning it into a Poisson problem!
- Turn a Gamma random variable into Poisson random variable using the Gamma-Poisson formula.

Gamma-Poisson Formula

For $T \sim \text{Gamma}(\alpha, \lambda)$ and $X \sim \text{Pois}(\lambda t)$,

$$P(T > t) = P(X < \alpha)$$

and

$$P(T \le t) = P(X \ge \alpha)$$

Can turn a
Gamma R.V
INTO a Pois.

And USE
Poisson CDF
Poisson PMF
to Calculate
Probabilities

Gamma Distribution Example

(Back to Example 1 #3)

3. What is the probability for the entire program to be compiled in less than 12 minutes.

N = 3

• Step 1: Define our Gamma random variable: $T \sim Gamma(\alpha, \lambda) \equiv Gamma(3, \frac{1}{5})$ $\lambda = \sqrt{5}$ t = 12 We want to know P(T < t) = P(T < 12) = ?

• Step 2: Convert the Gamma R.V (T) into a Poisson R.V (X): $X \sim Pois(\lambda t) \equiv Pois(\frac{1}{5} \cdot 12) \equiv Pois(2.4)$ parameter for $Pois(550N) \approx N$

• Step 3: Use Gamma-Poisson formula: $P(T \le t) = P(X \ge \alpha)$

$$P(T < 12) = P(T \le 12) \qquad \text{SINCE T is continuous RV}$$

$$= P(X \ge 3) \qquad \text{Gramma/Poisson Formula}$$

$$= 1 - P(X \ge 3) \qquad \text{Gramma/Poisson Formula}$$

$$= 1 - F_X(2) \qquad \text{USING Poisson}$$

$$= 1 - 0.5697 \qquad \text{CDF Table}$$

$$= 0.4303$$

Gamma Distribution Example

4. What is the probability that it takes at least $(5 \text{ minutes to compile the entire program?}) <math>P(T \ge (5)) = ?$

STEP Z : Convert the Gamma R.V (T) into Poisson R.V (X) × ~ Pois (xt) = Pois (15-5) = Pois (1)

STEP3: Use Chamma-Poisson Formula:
$$P(T>t) = P(X < X)$$

 $P(T \ge 5) = P(T > 5)$ Since T is continuous R.V
 $= P(X < X)$
 $= P(X < 3)$ Since X is discrete R.V
 $= P(X \le 2)$ Using Appendix A
 $= P(X \le 2)$ Poisson CDF Table
 $= 0.9196$ Poisson CDF Table