Lecture 15

Normal Distribution

Manju M. Johny

STAT 330 - Iowa State University

Normal Distribution

Setup: The normal distribution is commonly used to model a wide variety of variables (weight, height, temperature. voltage, etc) due to its *"bell-shaped"* and *symmetric* shape.

If a random variable X follows a *normal distribution*,

 $X \sim N(\mu, \sigma^2)$

where μ is the mean, and $\sigma^2 > {\rm 0}$ is the variance

• Probability Density Function (pdf)

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}} \qquad ext{for } -\infty < x < \infty$$

- Expected Value: $E(X) = \mu$
- Variance: $Var(X) = \sigma^2$

Normal PDF

Figure 1: PDFs for normal distribution with various μ and σ^2

 μ determines the location of the peak in the x-axis, σ^2 determines the "width" of the bell shape.

Normal CDF

• Cumulative Distribution Function (cdf)

$$F_X(t) = \int_{-\infty}^t f(x) dx$$
 (no closed form)

- $\rightarrow\,$ The normal cdf does not have a closed form expression.
- → Use cdf table (*z*-table) of *standard normal distribution* $N(\mu = 0, \sigma^2 = 1)$ to obtain probabilities.
- \rightarrow We need to *standardize* any normal random variable, X, into standard normal random variable, Z.

Standardization of Normal Distribution

Let $X \sim N(\mu, \sigma^2)$. Then,

1. $Z = \frac{X-\mu}{\sigma}$ is a standard normal random variable

2. $Z \sim N(0,1)$ (normal distribution with $\mu = 0$, $\sigma^2 = 1$)

Example 1: Suppose $X \sim N(20, 100)$. What is the probability that X is less than 23.5?

To find this probability, we usually ...

- Integrate the PDF (too difficult)
- Plug into CDF (impossible no closed form for CDF of X)

Instead we standardize X, and obtain probabilities using the standard normal cdf table (z-table)

- The standardized R.V is $Z = \frac{X-\mu}{\sigma} = \frac{X-20}{\sqrt{100}} \sim N(0,1)$
- The standardized observation is $z = \frac{x-\mu}{\sigma} = \frac{23.5-20}{\sqrt{100}} = 0.23$
- P(X < 10) = P(Z < 0.35) (obtain this from z-table)

Standard Normal Distribution

Standard Normal Distribution

Suppose a random variable, X, follows a $N(\mu, \sigma^2)$ distribution. Then, $Z = \frac{X-\mu}{\sigma^2}$ follows a *standard normal distribution*

 $Z \sim N(0,1)$

• Probability Density Function (pdf)

$$f(z) = rac{1}{\sqrt{2\pi}}e^{-rac{z^2}{2}}$$
 for $-\infty < z < \infty$

• Expected Value:

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{E(X)-\mu}{\sigma} = \frac{\mu-\mu}{\sigma} = 0$$

• Variance:

$$Var(Z) = Var\left(\frac{X-\mu}{\sigma}\right) = Var(\frac{X}{\sigma}) = \frac{1}{\sigma^2}Var(X) = \frac{\sigma^2}{\sigma^2} = 1$$

• Cumulative Distribution Function (cdf)

$$F_Z(t) = \int_{-\infty}^t f(z) dz = \Phi(t)$$
 (no closed form)

- $\rightarrow\,$ Just like the normal cdf, the standard normal cdf does not have a closed form expression.
- ightarrow The cdf of N(0,1) random variable is denoted by $\Phi(t)$ (or more commonly $\Phi(z)$)
- \rightarrow The values of the cdf, $\Phi(z)$, are found in the standard normal table (*z*-table)

Z-table (Standard Normal Table)

Z-table

- Z-Table gives proportion of normal curve less than a particular z score
 - · Gives left-hand area (dark blue shaded region)
 - This is same as the *percentile* value for z
 - Can be referred to as areas, proportions, or percentiles.

- z values range from -3.99 to 3.99 on the z-table
- Row ones and tenths place for z
- Column hundredths place for z
- P(Z < z) found <u>inside</u> z-table

Second decimal place in z								
0.00	0.01	0.02	0.03	0.04	0.05	0.06		
0.5000	0.5040	0.5080	0.5120	0.5160	199	0.5239		
0.5398	0.5438	0.5478	n Fring	obabilli	596	0.5636		
0.5793	0.5832	hand	arealp		J.J787	0.6026		
0.6179	0. Let	t-110.	P(2 2 2)	u.6331	0.6368	0.6406		
0.6554	0.6		0.6664	0.6700	0.6736	0.6772		
	0.00 0.5000 0.5398 0.5793 0.6179 0.6554	0.00 0.01 0.5000 0.5040 0.5398 0.5438 0.5793 0.5832 0.6179 0. Lef 0.6554 0.6	0.00 0.01 0.02 0.5000 0.5040 0.5080 0.5398 0.5438 0.5478 0.5793 0.5832 1.5478 0.6179 0. Left-hand 0.6554 0.6 240	Second 0.00 0.01 0.02 0.03 0.5000 0.5040 0.5080 0.5120 0.5398 0.5438 0.5478 0.5793 0.5793 0.5832 0.5478 0.5793 0.6179 0.5832 $p(Z < Z)$ 0.6554 0.6 0.6664	Second decimal0.000.010.020.030.040.50000.50400.50800.51200.51600.53980.54380.54780.5200.51200.57930.58320.54780.5200.63310.61790.Left-hand area/probability $p(Z < Z)$ 0.63310.65540.60.66640.6700	0.00 0.01 0.02 0.03 0.04 0.05 0.5000 0.5040 0.5080 0.5120 0.5160 199 0.5398 0.5438 0.5478 0.557 109 100 0.5793 0.5832 0.5478 0.557 100 100 100 0.6179 0. Left-hand area/probability 596 1.5987 0.6179 0. Left-hand 0.6664 0.6700 0.6736		

	Second decimal place in z							
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	
0.1	0.5398	0.5438	0,5478	0.5517	0.5557	0.5596	0.5636	
0.2	0.5793	0,5832	0.5871	0.5910	0.5948	0.5987	0.6026	
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	
0.4	0.6554	0.6591	0.6628	0.6664	0.6700/	0.6736	0.6772	
		P(Z < 0.35)				5)		

Examples

```
Suppose Z \sim N(0, 1)
```

1. P(Z < 1)

2.
$$P(Z > -2.31)$$

```
Suppose Z \sim N(0, 1)
```

```
3. P(0 < Z < 1)
```

4. P(|Z| > 2)

Suppose $X \sim N(1,2)$, and we want to find P(1 < X < 2).

Normal Distribution Example