Lecture 16

Central Limit Theorem

Manju M. Johny

STAT 330 - Iowa State University

Central Limit Theorem (CLT)

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid random variables. For $i=1, \ldots, n$,

$$
x_{i} \stackrel{i i d}{\sim} \text { distribution }
$$

Any function of $\left\{X_{i}\right\}$ is also a random variable. Specifically,

- $S_{n}=\sum_{i=1}^{n} X_{i}$ is a R.V (with some distribution)
- $\overline{X_{n}}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ is a R.V (with some distribution)

For large sample size n, the distribution of S_{n} and \bar{X} both follow normal distributions!

Even without knowing the distribution of $\left\{X_{i}\right\}$, we can calculate probabilities for its sample mean and sample sum using the normal distribution. (extremely useful for real life problems)!

Central Limit Theorem (CLT)

- Sums and averages of RVs from any distribution have approximately normal distributions for large sample sizes

Central Limit Theorem (CLT)

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid random variables with $E\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$.
Define:

1. sample mean: $\overline{X_{n}}=\frac{\sum_{i=1}^{n} X_{i}}{n}$
2. sample sum: $S_{n}=\sum_{i=1}^{n} X_{i}$

Then, for large n,

$$
\begin{aligned}
& \overline{X_{n}} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \\
& S_{n} \sim N\left(n \mu, n \sigma^{2}\right)
\end{aligned}
$$

How to Use CLT for Means

- For large n,

$$
\overline{X_{n}} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- How to calculate probabilities involving $\overline{X_{n}}$?
- Standardize $\overline{X_{n}}$ to turn it into a standard normal random variable Z, and use the z-table! (lecture notes 14)
- Standardize any normal random variable by subtracting its mean, and dividing by its standard deviation.

$$
\begin{aligned}
& Z=\frac{\overline{X_{n}}-\mu}{\sigma / \sqrt{n}} \\
& Z \sim N(0,1)
\end{aligned}
$$

How to Use CLT for Means Cont.

- Ex: $P\left(a<\overline{X_{n}}<b\right)=$?
- Standardize all of the quantities involved in the above probability. Then use Z-table to obtain probabilities.

$$
\begin{aligned}
P\left(a<\overline{X_{n}}<b\right) & =P\left(\frac{a-\mu}{\sigma / \sqrt{n}}<\frac{\overline{X_{n}}-\mu}{\sigma / \sqrt{n}}<\frac{b-\mu}{\sigma / \sqrt{n}}\right) \\
& =P\left(\frac{a-\mu}{\sigma / \sqrt{n}}<Z<\frac{b-\mu}{\sigma / \sqrt{n}}\right) \\
& =P\left(Z<\frac{b-\mu}{\sigma / \sqrt{n}}\right)-P\left(Z<\frac{a-\mu}{\sigma / \sqrt{n}}\right) \\
& =\Phi\left(\frac{b-\mu}{\sigma / \sqrt{n}}\right)-\Phi\left(\frac{a-\mu}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

How to Use CLT for Sums

- For large n,

$$
S_{n} \sim N\left(n \mu, n \sigma^{2}\right)
$$

- Standardize S_{n} by subtracting its mean, and dividing by its standard deviation.

$$
\begin{aligned}
& Z=\frac{S_{n}-n \mu}{\sqrt{n \sigma^{2}}}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \\
& Z \sim N(0,1)
\end{aligned}
$$

- Then, use the Z-table to obtain desired probabilities.
- Ex:

$$
\begin{aligned}
P\left(S_{n}<a\right) & =P\left(\frac{S_{n}-n \mu}{\sigma \sqrt{n}}<\frac{a-n \mu}{\sigma \sqrt{n}}\right) \\
& =P\left(Z<\frac{a-n \mu}{\sigma \sqrt{n}}\right) \\
& =\Phi\left(\frac{a-n \mu}{\sigma \sqrt{n}}\right)
\end{aligned}
$$

Examples

Examples

Example 1: The time you spend waiting for the bus each day has a uniform distribution between 2 minutes and 5 minutes. Suppose you wait for the bus every day for a month (30 days).

1. Let $X_{i}=$ time spent waiting for the bus on the $i^{\text {th }}$ day for $i=1, \ldots, 30$.
What is the distribution of each X_{i} ?

What is it's expected value and variance?

Examples

2. Let $\overline{X_{n}}$ be the average time spent waiting for the bus over the month. $\overline{X_{n}}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\frac{\sum_{i=1}^{30} X_{i}}{30}$
What is the (approximate) probability that the average time you spent waiting for the bus is less than 4 min ?

Examples

Examples

3. How much time do you expect to spend waiting for the bus in total for a month?
4. What is the (approximate) probability that you spend more than 2 hours waiting for a bus in total for a month?

Examples

Examples

Example 2: Suppose an image has an expected size 1 megabyte with a standard deviation of 0.5 megabytes. A disk has 330 megabytes of free space. Is this disk likely to be sufficient for 300 independent images?

Examples

Examples

Example 3: An astronomer wants to measure the distance, d, from the observatory to a star. The astronomer plans to take n measurements of the distance and use the sample mean to estimate the true distance. From past records of these measurements the astronomer knows the standard deviation of a single measurement is 2 parsecs. How many measurements should the astronomer take so that the chance that his estimate differs by d by more than 0.5 parsecs is at most 0.05 ?

Examples

Examples

