Lecture 16

Central Limit Theorem

Manju M. Johny

STAT 330 - Iowa State University

1/16

Central Limit Theorem (CLT)

Suppose X_1, X_2, \dots, X_n are iid random variables. For $i = 1, \dots, n$,

 $X_i \stackrel{iid}{\sim} \text{distribution}$

Any function of $\{X_i\}$ is also a random variable. Specifically,

- $S_n = \sum_{i=1}^n X_i$ is a R.V (with some distribution)
- $\overline{X_n} = \frac{\sum_{i=1}^n X_i}{n}$ is a R.V (with some distribution)

For large sample size n, the distribution of S_n and \overline{X} both follow normal distributions!

Even without knowing the distribution of $\{X_i\}$, we can calculate probabilities for its sample mean and sample sum using the normal distribution. (extremely useful for real life problems)!

Idea
6b
Central
Limit
Theonem

Central Limit Theorem (CLT)

 Sums and averages of RVs from any distribution have approximately normal distributions for large sample sizes

start w/ any dist ex: Exp, Unif, normal, gamma, etc that has a mean &

Central Limit Theorem (CLT)

Suppose $X_1, X_2, ..., X_n$ are iid random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ for i = 1, ..., n.

Define:

- 1. sample mean: $\overline{X_n} = \frac{\sum_{i=1}^n X_i}{n}$
- 2. sample sum: $S_n = \sum_{i=1}^n X_i$

Then, for large n,

$$\overline{X_n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $S_n \sim N(n\mu, n\sigma^2)$

get the 2 pu and original soon original xi distribution

3/16

How to Use CLT for Means

• For large n,

$$\overline{X_n} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

- How to calculate probabilities involving $\overline{X_n}$?
- Standardize $\overline{X_n}$ to turn it into a standard normal random variable Z, and use the z-table! (lecture notes 14) 5
- Standardize any normal random variable by subtracting its mean, and dividing by its standard deviation.

$$Z = \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}}$$

$$Z \sim N(0, 1)$$

$$SHA \quad NORMAL dist$$

$$VSL \quad Z - tuble \quad DF$$

$$Obtain \quad CDF intes) 4/16$$

$$(Probabilities)$$

How to Use CLT for Means Cont.

• Standardize all of the quantities involved in the above probability. Then use Z-table to obtain probabilities.

$P(a < \overline{X_n} < b)$	$) = P\left(\frac{a-\mu}{\sigma/\sqrt{n}} < \frac{\overline{X_n} - \mu}{\sigma/\sqrt{n}} < \frac{b-\mu}{\sigma/\sqrt{n}}\right)$	After Standardizing
	$=P\left(\frac{a-\mu}{\sigma/\sqrt{n}}< Z<\frac{b-\mu}{\sigma/\sqrt{n}}\right)$	
	$=P\left(Z<\frac{b-\mu}{\sigma/\sqrt{n}}\right)-P\left(Z<\frac{a-\mu}{\sigma/\sqrt{n}}\right)$	$\frac{\mu}{\sqrt{n}}$ $\frac{a-\mu}{\sqrt{5}\sqrt{5}}$ $\frac{b+\mu}{\sqrt{5}\sqrt{5}}$
	/	get this area table
	usl z-tuble z-tuble	5/16

How to Use CLT for Sums

• For large n,

$$S_n \sim N(n\mu, n\sigma^2)$$

• Standardize S_n by subtracting its mean, and dividing by its standard deviation.

$$Z = rac{S_n - n\mu}{\sqrt{n\sigma^2}} = rac{S_n - n\mu}{\sigma\sqrt{n}}$$
 $Z \sim N(0, 1)$

Then, use the Z—table to obtain desired probabilities.

• Ex:
$$P(S_n < a) = P\left(\frac{S_n - n\mu}{\sigma\sqrt{n}} < \frac{a - n\mu}{\sigma\sqrt{n}}\right)$$

$$= P\left(Z < \frac{a - n\mu}{\sigma\sqrt{n}}\right)$$

$$= \Phi\left(\frac{a - n\mu}{\sigma\sqrt{n}}\right)$$
Look up $Z = 1.66$

$$= \Phi\left(\frac{a - n\mu}{\sigma\sqrt{n}}\right)$$
to just a find margins $\delta b \neq table$ evaluates mumber and get $\delta b \neq table$ and $\delta b \neq table$ and $\delta b \neq table$

Examples

Example 1: The time you spend waiting for the bus each day has a uniform distribution between 2 minutes and 5 minutes. Suppose you wait for the bus every day for a month (30 days).

1. Let X_i = time spent waiting for the bus on the i^{th} day for $i = 1, \ldots, 30.$

What is it's expected value and variance?

For each $\int E(Xi) = \frac{a+b}{2} = \frac{2+5}{2} = \frac{7}{2} = 3.5 = \frac{10}{2}$ (outh day) $\int Var(Xi) = \frac{(b-a)^2}{12} = \frac{(5-2)^2}{12} = \frac{9}{12} = 0.75 = \frac{10}{2}$

2. Let $\overline{X_n}$ be the average time spent waiting for the bus over the month. $\overline{X_n} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{\sum_{i=1}^{30} X_i}{30}$

What is the (approximate) probability that the average time you spent waiting for the bus is less than 4 min? $P(\bar{\chi}_n < 4) = ?$

Now, we're interested in the R.V \(\overline{X}_n = \frac{32}{2} \tilde{X}_1/30 Since n is large,

original Xi's

Examples

Standardize I into P.V Z

$$\frac{7}{7} = \frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10.75/30}} = \frac{1}{\sqrt{10.75/30}} = \frac{1}{\sqrt{10.75/30}} \sim N(0,1)$$

$$P(\bar{X}_{n} < 4) = P(\frac{\bar{X}_{n} - M}{\sigma/\bar{v}_{n}} < \frac{4 - M}{\sigma/\bar{v}_{n}})$$

$$= P \left(\frac{7}{2} < \frac{4-3.5}{0.1581} \right)$$

$$= P(Z < 3.16)$$

=
$$\overline{\Phi}$$
 (3.16)

use z-tuble

· Look up ==3.16 in margins of z-table

· obtain P(Z<3.16)

from inside z-table.

- 3. How much time do you expect to spend waiting for the bus in total for a month? Now we want $\sum_{i=1}^{30} x_i$ as our R.V $E\left(\sum_{i=1}^{30} x_i\right) = 30 E(x_1) = 30 \cdot \mu = 30 \cdot 3.5 = 105$
- 4. What is the (approximate) probability that you spend more than 2 hours waiting for a bus in total for a month?

120 min
Our new R.V is
$$Sn = \underset{i=1}{30} Xi$$

Since n is large,

Using
$$\rightarrow$$
 Sn \sim N (n μ , n σ^2)
CLT for \equiv N (30-3.5, 30-0.75)
 \equiv N (105, 22.5) 10/16

Examples

can't get this directly need to standardize & use z-table

standardize

$$Z = \frac{Sn - NM}{\sqrt{n\sigma^2}} = \frac{Sn - NM}{\sigma\sqrt{n}} = \frac{Sn - 105}{\sqrt{22.5}}$$

$$P(Sn > 120) = P\left(\frac{Sn - nM}{\sigma \sqrt{n}} > \frac{120 - nM}{\sigma \sqrt{n}}\right)$$

$$= P\left(\frac{Z}{2} > \frac{120 - 10S}{\sqrt{22.5}}\right)$$

$$= P\left(\frac{Z}{2} > \frac{3.16}{\sqrt{22.5}}\right)$$

$$= 1 - P\left(\frac{Z}{2} < \frac{3.16}{\sqrt{3.16}}\right)$$

11 / 16

single Xi

 $E(X_1) = 1 = M$ $Var(X_1) = 0.5^2 = 0^2$ Example 2: Suppose an image has an expected size 1 megabyte with a standard deviation of 0.5 megabytes. A disk has 330

megabytes of free space. Is this disk likely to be sufficient for 300 independent images?

We're interested in the size of the sum of 300 images Sn = 2 Xi

Since n=300 is large, use CLT for sums, Sn ~ N(nm, no2) $= N(300-1, 300 \cdot 0.5^2)$ = N (300, 75)

We want to know if 330 MB is enough space (e) $P(Sn \le 330) = ?$

Examples

$$P\left(Sn \leq 330\right) = P\left(\frac{Sn - n\mu}{\sigma \sqrt{n}} \leq \frac{330 - n\mu}{\sigma \sqrt{n}}\right)$$

$$= P(Z \le \frac{330 - 300}{\sqrt{75}})$$

$$= P(Z \le 3.46)$$

$$= \Phi(3.46)$$

$$= 0.9997$$

Example 3: An astronomer wants to measure the distance, d from distance the observatory to a star. The astronomer plans to take n sample measurements of the distance and use the sample mean to

Xi = Single measurements of the distance and use the sample mean to measurementestimate the true distance. From past records of these

For i = 1, ..., N measurements the astronomer knows the standard deviation of a single measurement is 2 parsecs. How many measurements should the astronomer take so that the chance that his estimate differs by

d by more than 0.5 parsecs is at most 0.05?

For $i=1, \dots, n$ Xi = single measurement Xi = single measurement

P($1\bar{X}_n - d1 > 0.5$) ≤ 0.05 We want the minimum # 25 measurement (n) 14/16 for this to be true

Examples

We know that $P(|\bar{X}_n - d| > 0.5) = P(\bar{X}_n - d > 0.5) + P(\bar{X}_n - d < -0.5)$

Using CLT for means, the distribution of \overline{X}_n is $\overline{X}_n \sim N(\mu, \sigma^2/n) = N(d, 4/n)$

 $P(|X_{n}-d|>0.5) = P(|X_{n}-d|>0.5) + P(|X_{n}-d|<-0.5)$ $= P(|X_{n}-d|>0.5) + P(|X_{n}-d|>0.5)$ $= P(|X_{n}-d|>0.5) + P(|X_{n$

We need the smallest integer n such that 15/16 $P(|Xn-d|70.5) = 2 \Phi(-Vn/4) \leq 0.05$

$$\Rightarrow \Phi(-\sqrt{n}/4) \leq 0.025$$

$$\Rightarrow -\sqrt{n}/4 \leq \Phi^{-1}(0.025)$$

$$\Rightarrow -\sqrt{n} \leq 4(-1.96)$$

$$\Rightarrow$$
 $N \geq (4-1.96)^2 = 61.47$

We need at least
$$n = 62$$
 observations $\frac{16}{16}$