Lecture 17

Stochastic Process \& Markov Chain

Manju M. Johny
STAT 330 - Iowa State University

Stochastic Process

Stochastic Processes

Definitions

A stochastic process is a random variable that also depends on time. It is written as

$$
X_{t}(\omega)=X(t, \omega) \text { for } t \in \mathcal{T}, \omega \in \Omega
$$

where \mathcal{T} is a set of possible times. e.g. $[0, \infty),\{0,1,2, \ldots\}$ and Ω is the whole sample space.

- $X_{t}=X_{t}(\omega)$ is the random variable
- t is time
- ω is the "state"
- The state space is the collection of values the R.V X_{t} can take on: $\cup_{t \in \mathcal{T}} \operatorname{Im}\left(X_{t}\right)$

Types of Stochastic Processes

Types of Stochastic Processes: $X_{t}(\omega)$ can be

- Continuous-time (t) continuous-state (ω)
- Discrete-time (t) continuous-state (ω)
- Continuous-time (t), discrete-state (ω)
- Discrete-time (t), discrete-state (ω)

Types of Stochastic Processes

Examples:

1. Let X_{t} be the result of tossing a fair coin $(0=$ tails, $1=$ heads) in the $t^{t h}$ trial.

- The time (trial) $t \in \mathcal{T}$ where $\mathcal{T}=\{1,2,3, \ldots\}$
- $\operatorname{Im}\left(X_{t}\right)=\{0,1\}$
- This is an example of \qquad time, \qquad state stochastic process.

2. Let X_{t} be the number of customers in a store at time t.

- The time $t \in \mathcal{T}$ where $\mathcal{T}=(0, \infty)$
- $\operatorname{Im}\left(X_{t}\right)=\{0,1,2,3, \ldots\}$
- This is an example of \qquad time, \qquad state stochastic process.

Markov Chain

Markov Chain (MC) and Markov Property

Markov Property

A stochastic process X_{t} satisfies the Markov property if for any
$t_{1}<t_{2}<\ldots<t_{n}<t$ and any sets $A ; A_{1}, \ldots, A_{n}$:

$$
P\left\{X_{t} \in A \mid X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right\}=P\left\{X_{t} \in A \mid X_{t_{n}} \in A_{n}\right\}
$$

- The probability distribution of X_{t} at time t only depends on its previous state.
- If the above is satisfied, then X_{t} is called a Markov Chain.

Markov Property Examples

1. A (fair) coin in flipped over and over: If coin lands on "heads", you win \$1. If coin lands on "tails", you lose \$1. Let X_{t} be your profit after t flips.

- $P\left(X_{5}=3 \mid X_{4}=2\right)=$
- $P\left(X_{5}=3 \mid X_{4}=2, X_{3}=1, X_{2}=2, X_{1}=1\right)=$

2. An urn contains 2 red balls, and 1 green ball. A ball is drawn (without replacement) from the urn yesterday and today. Another ball will be drawn tomorrow. Suppose you drew a red ball yesterday, and a red ball today.

- $P($ Red tomorrow|Red today $)=$
- $P($ Red tomorrow \mid Red today, Red yesterday $)=$

Discrete-Time Discrete-State MC

Discrete-Time Discrete-State Markov Chain (MC)

Suppose we have a Markov chain with time set $\mathcal{T}=\{0,1,2, \ldots\}$ and state space $\{0,1,2, \ldots\}$ Two things we need to know about X_{t} :

1. Initial distribution $\left(P_{0}\right): P_{0}(x)=P\left(X_{0}=x\right)$ usually given as a vector of probabilities for the initial states of X_{t}.
Ex: State space $=\{0,1,2\} ; P_{0}=\{0.3,0.4,0.3\}$
2. Transition probabilities:

1-step transition probability: probability of moving from state i to state j in 1 step.
$p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)$
h-step transition probability: probability of moving from state i to state j in h steps.
$p_{i j}^{(h)}=P\left(X_{t+h}=j \mid X_{t}=i\right)$

Discrete-Time Discrete-State Markov Chain (MC)

- We assume that the Markov Chain (MC) is homogeneous. (ie) transition probabilities $p_{i j}$ are independent of t. \rightarrow For all times $t_{1}, t_{2} \in \mathcal{T}, p_{i j}\left(t_{1}\right)=p_{i j}\left(t_{2}\right)$.
- Then, the distribution of a homogeneous MC is completely determined by the initial distribution (P_{0}) and one-step transition probability $\left(p_{i j}\right)$.

Main Idea: Start with an initial distribution P_{0}. Then use the one-step transition probability $p_{i j}$ to "jump" forward to the next step. Then, we can keep going forward one step at a time.

Examples

Example

Example 1: In the summer, each day in Ames is either sunny or rainy. A sunny day is followed by another sunny day with probability 0.7 , whereas a rainy day is followed by a sunny day with probability 0.4. It rains on Monday. Make weather forecasts for Tuesday and Wednesday.
Let $1=$ "Sunny" and $2=$ "Rainy".
To simplify and solve these types of problems, use transition matrices and matrix multiplication.

1-Step Transition Probability Matrix

For a homogeneous MC with state space $\{1,2, \ldots, n\}$, the 1-step transition probability matrix is:

$$
P=\left(\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right) .
$$

The element from the i-th row and j-th column is $p_{i j}$, which is the transition probability from state i to state j.

h-Step Transition Probability Matrix

Similarly, one can define a h-step transition probability matrix

$$
P^{(h)}=\left(\begin{array}{cccc}
p_{11}^{(h)} & p_{12}^{(h)} & \cdots & p_{1 n}^{(h)} \\
p_{21}^{(h)} & p_{22}^{(h)} & \cdots & p_{2 n}^{(h)} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1}^{(h)} & p_{n 2}^{(h)} & \cdots & p_{n n}^{(h)}
\end{array}\right) .
$$

Using the matrix notation the following results follow:

- 2-step transition matrix $P^{(2)}=P \cdot P=P^{2}$
- h-step transition matrix $P^{(h)}=P^{h}$
- The initial distribution of X_{0} is written as row vector P_{0}. The distribution of X_{h} (h-steps in the future) is $P_{h}=P_{0} P^{h}$

Example

Back to Example 1: We can solve the problem much more easily by using transition matrices....

$$
P=\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right)
$$

$$
P^{(2)}=P \cdot P=\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right) \cdot\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right)=\left(\begin{array}{ll}
0.61 & 0.39 \\
0.52 & 0.48
\end{array}\right)
$$

$$
P^{(3)}=P \cdot P \cdot P=\left(\begin{array}{ll}
0.61 & 0.39 \\
0.52 & 0.48
\end{array}\right) \cdot\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right)=\left(\begin{array}{ll}
0.583 & 0.417 \\
0.556 & 0.444
\end{array}\right)
$$

