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Stochastic Process



Stochastic Processes

Definitions

A stochastic process is a random variable that also depends on

time. It is written as

Xt(ω) = X (t, ω) for t ∈ T , ω ∈ Ω

where T is a set of possible times. e.g. [0,∞), {0, 1, 2, . . .}
and Ω is the whole sample space.

• Xt = Xt(ω) is the random variable

• t is time

• ω is the “state”

• The state space is the collection of values the R.V Xt can take

on: ∪t∈T Im(Xt)
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Types of Stochastic Processes

Types of Stochastic Processes: Xt(ω) can be

• Continuous-time (t) continuous-state (ω)

• Discrete-time (t) continuous-state (ω)

• Continuous-time (t), discrete-state (ω)

• Discrete-time (t), discrete-state (ω)
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Types of Stochastic Processes

Examples:

1. Let Xt be the result of tossing a fair coin (0 = tails, 1 =
heads) in the tth trial.

• The time (trial) t ∈ T where T = {1, 2, 3, . . .}
• Im(Xt) = {0, 1}
• This is an example of time, state

stochastic process.

2. Let Xt be the number of customers in a store at time t.

• The time t ∈ T where T = (0,∞)

• Im(Xt) = {0,1,2,3, . . . }
• This is an example of time, state

stochastic process.
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Markov Chain (MC) and Markov Property

Markov Property

A stochastic process Xt satisfies the Markov property if for any

t1 < t2 < . . . < tn < t and any sets A; A1, ..., An:

P{Xt ∈ A|Xt1 ∈ A1, ... , Xtn ∈ An} = P{Xt ∈ A|Xtn ∈ An}.

• The probability distribution of Xt at time t only depends on

its previous state.

• If the above is satisfied, then Xt is called a Markov Chain.
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Markov Property Examples

1. A (fair) coin in flipped over and over: If coin lands on
“heads”, you win $1. If coin lands on “tails”, you lose $1. Let
Xt be your profit after t flips.

• P(X5 = 3|X4 = 2) =

• P(X5 = 3|X4 = 2,X3 = 1,X2 = 2,X1 = 1) =

2. An urn contains 2 red balls, and 1 green ball. A ball is drawn
(without replacement) from the urn yesterday and today.
Another ball will be drawn tomorrow. Suppose you drew a red
ball yesterday, and a red ball today.

• P(Red tomorrow|Red today) =

• P(Red tomorrow|Red today, Red yesterday) =
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Discrete-Time Discrete-State Markov Chain (MC)

Suppose we have a Markov chain with time set T = {0, 1, 2, . . .}
and state space {0, 1, 2, . . .} Two things we need to know about

Xt :

1. Initial distribution (P0): P0(x) = P(X0 = x) usually given as

a vector of probabilities for the initial states of Xt .

Ex: State space = {0, 1, 2}; P0 = {0.3, 0.4, 0.3}
2. Transition probabilities:

1-step transition probability: probability of moving from state

i to state j in 1 step.

pij = P(Xt+1 = j |Xt = i)

h-step transition probability: probability of moving from state

i to state j in h steps.

p
(h)
ij = P(Xt+h = j |Xt = i)
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Discrete-Time Discrete-State Markov Chain (MC)

• We assume that the Markov Chain (MC) is homogeneous.

(ie) transition probabilities pij are independent of t.

→ For all times t1, t2 ∈ T , pij(t1) = pij(t2).

• Then, the distribution of a homogeneous MC is completely

determined by the initial distribution (P0) and one-step

transition probability (pij).

Main Idea: Start with an initial distribution P0. Then use the

one-step transition probability pij to “jump” forward to the next

step. Then, we can keep going forward one step at a time.
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Example

Example 1: In the summer, each day in Ames is either sunny or

rainy. A sunny day is followed by another sunny day with

probability 0.7, whereas a rainy day is followed by a sunny day with

probability 0.4. It rains on Monday. Make weather forecasts for

Tuesday and Wednesday.

Let 1 = “Sunny” and 2 = “Rainy”.

To simplify and solve these types of problems, use transition

matrices and matrix multiplication.
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1-Step Transition Probability Matrix

For a homogeneous MC with state space {1, 2, ..., n}, the 1-step

transition probability matrix is:

P =


p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...

pn1 pn2 · · · pnn

 .

The element from the i-th row and j-th column is pij , which is the

transition probability from state i to state j .
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h-Step Transition Probability Matrix

Similarly, one can define a h-step transition probability matrix

P(h) =


p
(h)
11 p

(h)
12 · · · p

(h)
1n

p
(h)
21 p

(h)
22 · · · p

(h)
2n

...
...

. . .
...

p
(h)
n1 p

(h)
n2 · · · p

(h)
nn

 .

Using the matrix notation the following results follow:

• 2-step transition matrix P(2) = P · P = P2

• h-step transition matrix P(h) = Ph

• The initial distribution of X0 is written as row vector P0.

The distribution of Xh (h-steps in the future) is Ph = P0P
h
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Example

Back to Example 1: We can solve the problem much more easily by

using transition matrices . . . .

P =

(
0.7 0.3

0.4 0.6

)

P(2) = P · P =

(
0.7 0.3

0.4 0.6

)
·

(
0.7 0.3

0.4 0.6

)
=

(
0.61 0.39

0.52 0.48

)

P(3) = P ·P ·P =

(
0.61 0.39

0.52 0.48

)
·

(
0.7 0.3

0.4 0.6

)
=

(
0.583 0.417

0.556 0.444

)
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