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Stochastic Processes

Definitions
A stochastic process is a random variable that also depends on

time. It is written as
Xe(w) = X(t,w) fort € T,w € Q
where 7 is a set of possible times. e.g. [0,00),{0,1,2,...}

and €2 is the whole sample space.

e X; = X¢(w) is the random variable
® tis time

w is the “state”

The state space is the collection of values the R.V X; can take
on: UteTIm(Xt)
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Types of Stochastic Processes

Types of Stochastic Processes: X;(w) can be

e Continuous-time (t) continuous-state (w)
e Discrete-time (t) continuous-state (w) e il m\ﬂ
e Continuous-time (t), discrete-state (w)

e Discrete-time (t), discrete-state (w) st i
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Types of Stochastic Processes

Examples:

1. Let X; be the result of tossing a fair coin (0 = tails, 1 =
heads) in the t trial.
s ek 0k @) g time (trial) ¢ € 7 where T = {1,2,3,...}
Yoo Cwn W o mix,) = (0,1}
n \JUV\"'LS e This is an example of Nscwete  time, 1Sen state

0 A )
o o stochastic process.
2. Let X; be the number of customers in a store at time t.

K (c) © Thetimet e T where T = (0, 00)
i any e =>° Im(X) = {0123, ...}

Ve Con { e This is an example of _(ovnuds  time, discwt®  state
oW \/U“\‘)Q 3 stochastic process.
50, \ 1 '% !
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Markov Chain




Markov Chain (MC) and Markov Property

Markov Property
A stochastic process X; satisfies the Markov property if for any
t1 <th<...<t, <tandany sets A; Ay, ..., Ap:

P{Xt € A|Xt1 € A]_, ceey th = An} - P{Xt € AIth S An}

e The probability distribution of X; at time t only depends on
its previous state. (whut Wappened rignd befowe (b )

e If the above is satisfied, then X; is called a Markov Chain.
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Markov Property Examples
it . B> 8L
1. A (fair) coin in flipped over and over: If coin lands on T > - %4

“heads”, you win $1. If coin lands on "tails”, you lose $1. Let
Xt be your profit after t flips.
o PXs=3X=2)= (.5
e P(Xs=31Xs =2,X:=1,%=2,X=1)= 0.5 )
Xe follows markouz pyopevty = X s & Marlov chain

2. An urn contains 2 red balls, and 1 green ball. A ball is drawn
(without replacement) from the urn yesterday and today.
Another ball will be drawn tomorrow. Suppose you drew a red
ball yesterday, and a red ball today.

e P(Red tomorrow|Red today) = ().5
e P(Red tomorrow|Red today, Red yesterday) = ()

Xt 1 not  wackov  chwn -
Vi wawko propevly ot suhished .
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Discrete-Time Discrete-State MC

Discrete-Time Discrete-State Markov Chain (MC)

Suppose we have a Markov chain with time set 7 = {0,1,2,...}
and state space {0,1,2,...} Two things we need to know about
Xt:

1. Initial distribution (Pg): Po(x) = P(Xo = x) usually given as ! S‘\/M‘f.‘v}{%\es 1)
a vector of probabilities for the initial states of X;. Pm\"u\om
Ex: State space = {0,1,2}; Py = {0.3,0.4,0.3}

- 2. Transition probabilities:
Ve s 1-step transition probability: probability of moving from state
e A% i to state j in 1 step.
(e ﬁro\wﬁg’wo\\ pij = P(Xep1 = j|Xe = i)

4/\,\0\&‘(/ e)«,) h-step transition probability: probability of moving from state

i to state j in h steps.
P,-(J-h) = P(Xeyn = j|Xe = i) . \
Ex PES(Z) . pvobqb‘\ﬁs &) movng wom stele 7/16
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Discrete-Time Discrete-State Markov Chain (MC)

e We assume that the Markov Chain (MC) is homogeneous.
(ie) transition probabilities p;; are independent of t.
— For all times ty,t, € T, pij(t1) = pij(t2).

e Then, the distribution of a homogeneous MC is completely
determined by the initial distribution (Py) and one-step
transition probability (pj;).

Main Idea: Start with an initial distribution Py. Then use the
one-step transition probability p;; to “jump” forward to the next
step. Then, we can keep going forward one step at a time.

N X2 X3 Xy s
——De———ye—De———>
Py P Py P
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Examples




Example 1: In the summer, each day in Ames is either sunny or

. rainy. A sunny day is followed by another sunny day with
probability 0.7, whereas a rainy day is followed by a sunny day with
probability 0.4. It rains on Monday. Make weather forecasts for
Tuesday and Wednesday.
Let 1 = “Sunny” and 2 = “Rainy”.

To simplify and solve these types of problems, use transition
matrices and matrix multiplication.
Frst we Wil Sl wo wiakices - Tuewt Show -t
He much gy W/ mecknces,

PV L Xe = Wewher on day

Stake space = 31 , 2%
: A (‘QM\A

Sunny 9/16

Graxt on Monday * we know Tt vains o Mownday
(Mon) , (sunny) (rany)
Xo | 1 2

o) 0 4
o Thibal Diskviburiovt Po ot o (mondmd)

Yo. = [:o 1]

. Transition Probabilifies  (pyy whew L= cuvmv\t})':&\'ura)
e Py = P(Xeq =1 [ Xe=V) = 0F p ( Suny YSunny )
* P12 P(Xen1 =2 | e = ) = 1-Pu=10-32 'PUZ“\V‘&\ S‘“‘“tﬁ)
eP2r = P(Xey = | | Xe=2) =04 P ( Sunny | Rainy )
*P22= P(Xewy =2 | Xe=2) = 1-P2 = 00 P(Ealvtj\Pamg)
 Foreast fov Tuesday (4 —<lep ahesd ) (2{:5!) (5\2\_»13) ;ra\ng)
P( Tves Sunny | Mon Raing) = 04 = Py ?(z")} T
P(Tues Bany| Mon Ratny ] = 86 = e |

)

P%tcﬁom 0% Mg &, van o Twes 10/16
novo chauce spsun onTVES.



» Fore cast Por  Wedwneg o\ay q‘\\)e‘(\

s e P(Wed Payfi M Rany )
B P B P2 F =P
Mon Tues WQA - 22?2'2 1 ?2\\3\7_

(.Z Pa ?é P2 4@ = (0.6)* + (0.4)(0.3)

= 0.46
(Wed) (sun) (rain N
Ao \ 1 ) C?_I ) ( W-ed S\mn‘j \ Mon '(Zuv\,j]
o(x2)| e 048 = \— 048
0.52 = .52

LB cuenc 4, raih on wedne sday
&% chance & 94N s Wednes day

We  Can rowhnuwe ke Hus (moving foywurd,

pv\ea\taﬁams“/ N

o Shep ak o hwae) fo ma ke
Cov  agl  Eutwe  deg

put  TE o will gt Wowusingly  ompli cted.

Sumpliey 4 avold  prstukes Yy using
«{T(LHC:PHUV\ mahices ‘
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1-Step Transition Probability Matrix

For a homogeneous MC wi'th state space {1, 2, ..., n}, the I-step

transition probability matrix is: 5
! 2 S n
. agde 1o

P11 p12 Pin \ o

2| P21 P22 - P2 \
P . - . . .n . ?_,3 CU\‘(MW\
L ¢ : ; . : \:: W}(\]\\’Q’
n\Pn1 Pn2 - Pnn 9= Cj(o"_\(es

The element from the i-th row and j-th column is pj;, which is the
transition probability from state / to state j.
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h-Step Transition Probability Matrix

Similarly, one can define a h-step transition probability matrix
Xe= RV
= h
Po = [_07) 0.% 04 ] é@\s\"‘l_\)(h) _ Psy Py ot P

4 -sep hanoHion

0-1 03

h h h
0. Pfﬂ) P,(,z) c Pr(m)

P= loz 020 , , ; ; _

4 0k 043x3Using the matrix notation the following results follow:

Predick 4-svep  ® 2-step transition matrix P = p. p = P2 |

M
anedd e h-step transition matrix P() = ph =@ -P--- ¥
= Vo ? e The initial distribution of X is written as row vector Py.
Oredict 2P The distribution of X;, (h-steps in the future) is Py, = PoPh
anead L Aution
(2) Ending D!
PP =RPP 14/16



Back to Example 1: We can solve the problem much more easily by
using transition matrices . ...

»_ (07 03 :(Pn P.z>
- \04 0.6 P21 P2
P2 —p.p— 0.7 0.3 . 0.7 0.3 _ 0.61 0.39
0.4 0.6 04 0.6 052 0.48
61 0. 7 0. _ .
P _p.p.p_ (061 039} (07 03] (0583 0417
0.52 0.48 0.4 0.6 0.556 0.444
Recull : Stake Spete = 21 2 ¢

2 A
sSwn

Mo - IV[\"’TCL\ DlS}Y\mﬁDVI Po (W now 106%, rdn OV M(Mdukf)
- csum)  Craih)

= | X | 12 15/16
Po= (o 1] SR
} (sw) (rq
TueS 4 -Step awead Puediction ) (ram) e zn)
Po-P = [0 ;2 ¢F 03 = [()LI d,b]wz Pl=2)| 04 (.0
THRY
2%2

2 -gYep anead Predichioy

AL (wed) ) (Sun) (rdin)
?OPCZ)—:PO-F-P . b ’1 N
= [:o )] 0.61 0.-29 tl = f'/'ifl’_’lzf’ifﬁ’ P(“Z)]OSZ 046
[0-32 oue | [g52 048]
P(V\/{d?@am, Mon Ran ) = 0-48
o(Wed Swn | Moa Ran) =¢.52
TAYS 2 -sieps ahead PredicHon

Po Pm =P P-P-P = [055,0900] 16/18



