Lecture 17

Stochastic Process & Markov Chain

Manju M. Johny

STAT 330 - Iowa State University

1/16

Stochastic Process

Stochastic Processes

Definitions

A *stochastic process* is a random variable that also depends on time. It is written as

$$X_t(\omega) = X(t, \omega) \text{ for } t \in \mathcal{T}, \omega \in \Omega$$

where \mathcal{T} is a set of possible times. e.g. $[0, \infty), \{0, 1, 2, \ldots\}$ and Ω is the whole sample space.

- $X_t = X_t(\omega)$ is the random variable
- t is time
- ω is the "state"
- The *state space* is the collection of values the R.V X_t can take on: $\bigcup_{t \in \mathcal{T}} Im(X_t)$

2/16

Types of Stochastic Processes

Types of Stochastic Processes: $X_t(\omega)$ can be

- Continuous-time (t) continuous-state (ω)
- Discrete-time (t) continuous-state (ω)
- Continuous-time (t), discrete-state (ω)
- Discrete-time (t), discrete-state (ω)

I look at types

Types of Stochastic Processes

Examples:

1. Let X_t be the result of tossing a fair coin (0 = tails, 1 = heads) in the t^{th} trial.

at each trial (t) The time (trial) $t \in \mathcal{T}$ where $\mathcal{T} = \{1, 2, 3, \ldots\}$ χ_t can take $Im(X_t) = \{0,1\}$

values 0 or 1

- This is an example of <u>discrete</u> time, <u>discrete</u> state stochastic process.
- 2. Let X_t be the number of customers in a store at time t.

at any time (t) • The time $t \in \mathcal{T}$ where $\mathcal{T} = (0, \infty)$ • Im(X.) = (0.100)we write the contract of $Im(X_t) = \{0,1,2,3,\dots\}$ This is an arm on values -2011/2/31...3

- This is an example of <u>Continuous</u> time, <u>discull</u> state stochastic process.

4/16

Markov Chain

Markov Chain (MC) and Markov Property

Markov Property

A stochastic process X_t satisfies the *Markov property* if for any $t_1 < t_2 < ... < t_n < t$ and any sets A; $A_1, ..., A_n$:

$$P\{X_t \in A | X_{t_1} \in A_1, ..., X_{t_n} \in A_n\} = P\{X_t \in A | X_{t_n} \in A_n\}.$$

- The probability distribution of X_t at time t only depends on its previous state. (What happened right before it)
- If the above is satisfied, then X_t is called a Markov Chain.

5/16

Markov Property Examples

- 1. A (fair) coin in flipped over and over: If coin lands on "heads", you win \$1. If coin lands on "tails", you lose \$1. Let X_t be your profit after t flips.
 - $P(X_5 = 3|X_4 = 2) = 0.5$
 - $P(X_5 = 3 | X_4 = 2, X_3 = 1, X_2 = 2, X_1 = 1) = 0.5$

Xt Follows markous property -> Xt is a markov chain

- 2. An urn contains 2 red balls, and 1 green ball. A ball is drawn (without replacement) from the urn yesterday and today. Another ball will be drawn tomorrow. Suppose you drew a red ball yesterday, and a red ball today.
 - P(Red tomorrow|Red today) = 0.5
 - P(Red tomorrow|Red today, Red yesterday) = 0

Xt is not markov chain b/L markov property not satisfied.

6/16

Discrete-Time Discrete-State MC

Discrete-Time Discrete-State Markov Chain (MC)

Suppose we have a Markov chain with time set $\mathcal{T} = \{0,1,2,\ldots\}$ and state space $\{0,1,2,\ldots\}$ Two things we need to know about X_t :

1. Initial distribution (P_0) : $P_0(x) = P(X_0 = x)$ usually given as a vector of probabilities for the initial states of X_t . Ex: State space = $\{0, 1, 2\}$; $P_0 = \{0.3, 0.4, 0.3\}$

orobabilities"

i to state j in h steps.

 $p_{ij}^{(h)} = P(X_{t+h} = j | X_t = i)$ Ex Pij (2) = probabity of moving from state i to j in 2 steps

Discrete-Time Discrete-State Markov Chain (MC)

- We assume that the Markov Chain (MC) is homogeneous.
 (ie) transition probabilities p_{ij} are independent of t.
 - ightarrow For all times $t_1, t_2 \in \mathcal{T}$, $p_{ij}(t_1) = p_{ij}(t_2)$.
- Then, the distribution of a homogeneous MC is completely determined by the initial distribution (P_0) and one-step transition probability (p_{ij}) .

Main Idea: Start with an initial distribution P_0 . Then use the one-step transition probability p_{ij} to "jump" forward to the next step. Then, we can keep going forward one step at a time.

8/16

Examples

Example 1: In the summer, each day in Ames is either sunny or rainy. A sunny day is followed by another sunny day with probability 0.7, whereas a rainy day is followed by a sunny day with probability 0.4. It rains on Monday. Make weather forecasts for Tuesday and Wednesday.

Let 1 = "Sunny" and 2 = "Rainy".

To simplify and solve these types of problems, use transition matrices and matrix multiplication.

First we will solve w/o matrices. Then show that its much easier w/ matrices.

RV: Xt = Weather on day t

9/16

Start on Monday: We know it rains on Monday

(Mon) (sunny) (rainy)

Zo 1 2

D(26) 0 1

• Initial Distribution Po of Xo (monday)

Po = [0 1]

- . Transition Probabilities (Pij where i= current, j= future)
 - · PII = P(X++1=1 | X+=1) = 0.7 P(Sunny) Sunny)
 - · P12 = P(X+1=2 | X+=1) = 1-P11=0.3 P(Rainy | Sunny)
 - · P21 = P(X++1 = 1 | X+ = 2) = 0.4 P(Sunny | Painy)
 - · Pzz = P(X+1 = 2 | X+ = 2) = 1-Pz1 = 0.6 P(Rainy | Rainy)
- Forecust for Tuesday (1-step ahead) (Tues) (sunny) (rainy) $P(\text{Tues Sunny} | \text{Mon Painy}) = 0.4 = P_{21} \frac{|x_1|}{|x_2|} \frac{1}{|x_3|} \frac{2}{|x_4|}$ $P(\text{Tues Rainy} | \text{Mon Painy}) = 0.6 = P_{22}$

prediction: 60% chance of value on Tues 10/16 40% chance of sun on Tues.

· Forecast for Wednesday

r given

P(Wed Painy Mon Painy)
$$= P_{22}P_{22} + P_{21}P_{12}$$

$$= (0.6)^{2} + (0.4)(0.3)$$

$$= 0.48$$

(Wed) (Sun) (rain)
$$\frac{2}{2}$$
 | $\frac{1}{2}$ | $\frac{2}{2}$ | 0.48 0.52

52% chance of rain on wednesday

We can continue like this (moving survaird one step at a time) to make predictions 11/16 for all survive days
But it will get increasingly complicated.

Simplify & avoid mistakes by using transition matrices.

1-Step Transition Probability Matrix

For a homogeneous MC with state space $\{1, 2, ..., n\}$, the 1-step transition probability matrix is:

$$P = \begin{cases} 1 & 2 & \dots & n \\ p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ n & p_{n1} & p_{n2} & \dots & p_{nn} \end{cases}$$

$$(nside is$$

$$Pij where
$$i = current$$

$$j = states$$$$

The element from the i-th row and j-th column is p_{ij} , which is the transition probability from state i to state j.

13 / 16

h-Step Transition Probability Matrix

Similarly, one can define a h-step transition probability matrix

Similarly, one can define a h-step transition probability
$$X_t = RV$$

State space = $\frac{1}{2}$ 1, $\frac{1}{2}$ 3, $\frac{3}{5}$

Po = $\frac{1}{2}$ 0.3 0.3 0.4 $\frac{1}{2}$ 4 Pish but of $\frac{1}{2}$ 5 Pin $\frac{1}{2}$ 6 Pin $\frac{1}{2}$ 6 Pin $\frac{1}{2}$ 7 Pin \frac

• h-step transition matrix
$$P^{(h)} = P^h = P \cdot P \cdot \cdots P$$

The initial distribution of
$$X_0$$
 is written as row vector P_0 .

Predict 2 Step a nead

$$= P_0 P^{(2)} = P_0 \cdot P \cdot P$$

The distribution of X_h (h-steps in the future) is $P_h = P_0 P^h$

a nead

$$= P_0 P^{(2)} = P_0 \cdot P \cdot P$$

The distribution of X_h (h-steps in the future) is $P_h = P_0 P^h$

Ending Distribution of P_0 and P_0 and P_0 and P_0 are a second or P_0 .

The distribution of
$$X_h$$
 (h-steps in the future) is $P_h = P_0 P$

= Po P(2) = Po ·P·P

Example

Back to Example 1: We can solve the problem much more easily by using transition matrices

$$P = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix}$$

$$P^{(2)} = P \cdot P = \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{pmatrix}$$

$$P^{(3)} = P \cdot P \cdot P = \begin{pmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{pmatrix} \cdot \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.583 & 0.417 \\ 0.556 & 0.444 \end{pmatrix}$$

Mon: Initial Distribution Po (We know 100% rain on monday)
$$P_0 = \begin{bmatrix} 0 & 1 \end{bmatrix} \qquad \frac{z_0 & 1}{P(z_0)} \qquad \frac{15/16}{P(z_0)}$$

$$\frac{x_0 \mid 1}{P(x_0 \mid 0)}$$

1-step ahead Prediction

Po.P =
$$\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.7 & 0.3 \\ 1.4 & 0.6 \end{bmatrix} = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}_{1\times2}$$

Csun) (rain)

 $\frac{z_1}{p(z_2)} \begin{bmatrix} 1 & 2 \\ 0.4 & 0.6 \end{bmatrix}$
 $\frac{z_{1}}{p(z_{2})} \begin{bmatrix} 1 & 2 \\ 0.4 & 0.6 \end{bmatrix}$

$$\frac{x_1}{P(x_2)} = \frac{1}{0.4} = \frac{2}{0.6}$$

$$P_0 P^{(2)} = P_0 \cdot P \cdot P$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0.61 & 0.39 \\ 0.52 & 0.48 \end{bmatrix} = \begin{bmatrix} 0.52 & 0.48 \end{bmatrix} = \begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$$

(wed) (Sun) (run)
$$z_2$$
 1 2 $p(z_2)$ 0.52 0.48