Lecture 18

Steady-State Markov Chain

Manju M. Johny

STAT 330 - Iowa State University

Steady-State

Steady-State Distribution

Definition

For a Markov chain $\left\{X_{t}: t \in \mathcal{T}\right\}$, if a collection of limiting probabilities

$$
\pi_{x}=\lim _{h \rightarrow \infty} P_{h}(x), \quad x \in \mathcal{X}
$$

exists, then π_{x} is called a steady-state distribution of the Markov chain. (Note: π is a distribution not the value 3.14...)

- This is the distribution of X_{t} after many, many transitions! (the long run probability)

$$
P_{h}=P_{0} P^{(h)}
$$ (Notes n

About the Steady-State Distribution

1. Obtaining the steady-state distribution: $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is the solution to the following set of linear equations

$$
\pi P=\pi, \quad \sum_{x \in \mathcal{X}} \pi_{x}=1
$$

($\sum_{x \in \mathcal{X}} \pi_{x}=1$ since each of the states should be in \mathcal{X})
2. What is meant by the "steady state" of a Markov chain?

- Suppose the system has reached its steady state, so that the distribution of the states is $P_{t}=\pi$.
- The state after one more transitions is:

$$
P_{t+1}=P_{t} P=\pi P=\pi
$$

- Thus, if a chain is in a steady state, the distribution stays the same ("steady") after any subsequent transitions.

3. The limit for P^{h} (the h-step transition matrix) is

$$
\begin{aligned}
& \text { cupital } \\
& \downarrow \Pi \\
& \Pi=\lim _{h \rightarrow \infty} P^{h}=\left(\begin{array}{cccc}
\pi_{1} & \pi_{2} & \cdots & \pi_{n} \\
\pi_{1} & \pi_{2} & \cdots & \pi_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\pi_{1} & \pi_{2} & \cdots & \pi_{n}
\end{array}\right) .
\end{aligned}
$$

All the rows are equal and consist of the steady state probabilities π_{x}.
4. The steady-state distribution is not guaranteed to exist.

- Steady-state distribution may or may not exist.
- If a Markov chain is regular, then it has a steady state distribution. (This is what we will check).

Example

Example

Example 1: Ames weather problem: Suppose the state space is ("sunny", " rainy") $=(1,2)$, with initial probability $P_{0}=(p, 1-p)$

- Can approximate the steady state distribution (π), by $P \cdot P \ldots P$ until convergence

$$
\begin{aligned}
& P=\left(\begin{array}{ll}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right), P^{\prime \prime}(2)=\left(\begin{array}{ll}
0.61 & 0.39 \\
0.52 & 0.48
\end{array}\right), P^{\prime \prime} \text { P.P.P } \\
& P^{(3)}=\left(\begin{array}{ll}
0.583 & 0.417 \\
0.556 & 0.444
\end{array}\right) \\
& P^{(15)} \approx \ldots \approx P^{(30)} \approx\left(\begin{array}{ll}
0.5714 & 0.4286 \\
0.5714 & 0.4286
\end{array}\right)=\left(\begin{array}{ll}
4 / 7 & 3 / 7 \\
4 / 7 & 3 / 7
\end{array}\right)=\left(\begin{array}{ll}
\pi_{1} & \pi_{2} \\
\pi_{1} & \pi_{2}
\end{array}\right)
\end{aligned}
$$

- For any given starting state distribution $P_{0}=(p, 1-p)$,

$$
P_{0} \pi=(p, 1-p)\left(\begin{array}{ll}
4 / 7 & 3 / 7 \\
4 / 7 & 3 / 7
\end{array}\right)=(4 / 7,3 / 7)
$$

Example

- Alternatively, we can obtain steady state distribution (π) by solving the system of equations:

One equation will always reduce
$\Rightarrow\left[\begin{array}{l}0.4 \pi_{2}=0.3 \pi_{1} \\ 0.3 \pi_{1}=0.4 \pi_{2}\end{array}\right\}$ to be same as another equation. Ex: If I had 3 equations here, then ld end up with 2 unique equations, and 1 repeat
$\Rightarrow 0.4 \pi_{2}=0.3 \pi_{1}$
$\Rightarrow \pi_{2}=\frac{3}{4} \pi_{1}$
Now use $\sum_{x} \Pi_{x}=1$ to
obtain values for π_{1} \& π_{2}

$$
\left.\begin{array}{l}
\sum_{x} \Pi_{x}=1=\begin{array}{l}
(1) \\
\Pi_{1}
\end{array}+\Pi_{2}=1 \\
\text { (2) } \Pi_{2}=\frac{3}{4} \Pi_{1}
\end{array}\right] \begin{aligned}
& \text { We have system } \\
& \text { of Equations } \\
& 2 E q^{\prime} \text { s \& } 2 \text { unknowns }
\end{aligned}
$$

plug (2) into (1)

$$
\begin{aligned}
& \pi_{1}+\pi_{2}=1 \\
\Rightarrow & \pi_{1}+3 / 4 \pi_{1}=1 \\
\Rightarrow & 7 / 4 \pi_{1}=1 \\
\Rightarrow & \pi_{1}=\frac{4}{7}
\end{aligned}
$$

$$
\pi_{1}+\pi_{2}=1
$$

$$
\Rightarrow \frac{4}{7}+\pi z=1
$$

$$
\Rightarrow \pi_{2}=\frac{3}{7}
$$

So my steady state distribution

$$
\begin{aligned}
\underline{\Pi} & =\left(\begin{array}{ll}
\Pi_{1} & \Pi_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
4 / 7 & 3 / 7
\end{array}\right)
\end{aligned}
$$

Main Idea: No matter what initial distribution P_{0} we start with, after a large number of steps, the probability distribution converges to approximately $(4 / 7,3 / 7)$. This $(4 / 7,3 / 7)$ is called the "steady-state distribution" or π
How to find steady state Distribution II
(1) Multiply P by itself many many times until $p^{(n)}$ converges (doe sn't change). The rows of $p^{(h)}=\Pi$
(2) Solve system $E q$'s
(1) II $P=I$
(2) $\sum_{x} \Pi_{x}=1$

Regular Markov Chain

Regular MC

Definition

A Markov Chain $\left\{X_{t}\right\}$ with transition matrix P is said to be regular if, for some n, all entries of $P^{(n)}$ are positive (>0).
Any regular Markov chain has a steady-state distribution.

1. Not every Markov chain has a steady-state distribution. Why?

Consider the following transition matrix:
then

$$
\begin{aligned}
& \qquad P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \text { Even Transition odd transition } \\
& P^{2 k}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad P^{2 k-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \forall k \in \mathbb{N} \\
& P^{(n)} \text { will keep oscillating } b / w \text { these two } \\
& \text { matrices forever :) }
\end{aligned}
$$

Checking Regular MC

2. As long as we find some n such that all entries of $P^{(n)}$ are (>0) positive, then the chain is regular. This does not mean that a regular Markov chain has to possess this property for all n. Consider the following transition matrix,

$$
P=\left(\begin{array}{ccc}
0 & 0 & 1 \\
2 / 3 & 0 & 1 / 3 \\
1 / 2 & 1 / 4 & 1 / 4
\end{array}\right)
$$

then

$$
P^{2}=\left(\begin{array}{lll}
.500 & .250 & .250 \\
.167 & .083 & .750 \\
.292 & .063 & .646
\end{array}\right)
$$

This Markov chain is regular since $P^{(2)}$ contains all positive elements even though the one-step transition matrix P contain non-positive elements.

