Lecture 2

Combinatorics

Manju M. Johny
STAT 330 - Iowa State University

Equally likely outcomes

Equally Likely Outcomes

Example 1: There are 4 chips in a box; 1 chip is defective. Randomly draw a chip from the box. What is the probability of selecting the defective chip?

- Common sense: P (draw defective chip) $=\frac{1}{4}$ or 25%
- Using probability theory...

Sample space:

$$
\begin{aligned}
& \Omega=\left\{g_{1}, g_{2}, g_{3}, d\right\} \\
& |\Omega|=4
\end{aligned}
$$

Event:

$$
\begin{aligned}
& A=\text { "draw defective chip" }=\{d\} \\
& |A|=1
\end{aligned}
$$

Probability of event: $P(A)=\frac{|A|}{|\Omega|}=\frac{1}{4}$

Equally Likely Outcomes Cont.

Theorem
If events in sample space are equally likely (i.e. $P(\{\omega\})$ is same for all $\omega \in \Omega$), then the probability of an event A is given by:

$$
P(A)=\frac{|A|}{|\Omega|},
$$

where $|A|$ is the number of elements in set A (cardinality of A).

Equally Likely Outcomes Cont.

Example 2: There are 4 chips in a box; 1 chip is defective.
Randomly draw 2 chips from the box. What is the probability that defective chip is among the 2 chosen?
Sample space: (All possibilities for drawing 2 chips)

$$
\begin{aligned}
& \Omega=\left\{\left\{g_{1}, g_{2}\right\},\left\{g_{1}, g_{3}\right\},\left\{g_{1}, d\right\},\left\{g_{2}, g_{3}\right\},\left\{g_{2}, d\right\},\left\{g_{3}, d\right\}\right\} \\
& |\Omega|=6
\end{aligned}
$$

Event:

$A=$ "defective chip is among the 2 chips drawn"
$=$

$$
|A|=
$$

Probability of event: $P(A)=\frac{|A|}{|\Omega|}=$

Multiplication Principle

Multiplication Principle

Multiplication Principle

If a complex action can be broken down into a series of k component actions, performed one after the other, where ...

- first action can be performed in n_{1} ways
- second action can be performed in n_{2} ways
- last action can be performed in n_{k} ways

Then, the complex action can be performed in $n_{1} n_{2} \cdots n_{k}$ ways.

Multiplication Principle Cont.

Example 3: Your friend owns 4 shirts (red, blue, green, white), and 2 pants (blue, black). What are all the ways he can create an outfit by choosing a shirt and pants to wear?

Example 4: Suppose licence plates are created as a sequence of 3 letters followed by 3 numbers. What is $|\Omega|$? (ie. how many license plates are in the sample space?)

Sample selection

Sample Selection

Imagine picking k objects from a box containing n objects.

Definitions

with replacement: After each selection, the object is put back in the box. It is possible to select the same object multiple times in the k selections.
without replacement: After each selection, the object is removed from the box. Cannot select the same object again.
ordered sample: Order of selected objects matters.
Example: Passwords ...abc1 $\neq \mathrm{c} 1 \mathrm{ba}$
unordered sample: Order of selected objects doesn't matter.
Example: Selecting people for a study.
(Mary, John, Susan) $=($ John, Mary, Susan $)$

3 Main Scenarios

There are 3 main scenarios we will deal with ...
Box contains the letters "a", "b", "c"

1. Ordered with replacement

- Ex: Select 2 letters where repeat letters are allowed.

$$
\begin{array}{r}
\Omega=\{(a, a),(b, b),(c, c),(a, b),(b, a), \\
(a, c),(c, a),(b, c),(c, b)\}
\end{array}
$$

2. Ordered without replacement

- Ex: Select 2 letters where repeat letters aren't allowed.

$$
\Omega=\{(a, b),(b, a),(a, c),(c, a),(b, c),(c, b)\}
$$

3. Unordered without replacement

- Ex: Consider "a", "b", "c" to be people, and you select 2 of them to be in your study. (Repeat letters aren't allowed)

$$
\Omega=\{(a, b),(a, c),(b, c)\}
$$

- Here (a, b) is same as (b, a), so we only write one of them in the sample space.
Ultimately, we want to count up $|\Omega|$ for these scenarios.

Ordered With Replacement

A box has n items numbered $1, \ldots, n$. Draw k items with replacement. (A number can be drawn twice).

Sample Space: $\Omega=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \in\{1, \ldots, n\}\right\}$
What is $|\Omega|$?
Break complex action into a series of k single draws.

1. n possibilities for x_{1}
2. n possibilities for x_{2}
k. n possibilities for x_{k}

Multiplication principle: $|\Omega|=n \cdot n \cdot n \cdots n=n^{k}$

Permutation

Ordered Without Replacement

A box has n items numbered $1, \ldots, n$. Select k items without replacement. This means once a number is chosen, it can't be selected again.
Sample Space: $\Omega=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \in\{1, \ldots, n\}, x_{i} \neq x_{j}\right\}$
What is $|\Omega|$?
Break complex action into a series of k single draws.

1. n possibilities for x_{1}
2. $n-1$ possibilities for x_{2}
3. $n-2$ possibilities for x_{2}
k. $n-(k-1)$ possibilities for x_{k}

Multiplication principle: $|\Omega|=n \cdot(n-1) \cdot(n-2) \cdots(n-(k-1))$
This is equivalent to $\frac{n!}{(n-k)!}$

Permutation

Definition

A permutation is an ordering of k distinct objects chosen from n objects. This is another name for the ordered without replacement scenario.

Theorem

$P(n, k)$, called the permutation number, is the number of permutations of k distinct objects out of n objects.

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

Note (factorials): $n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1$
$0!=1$
Ex. $4!=4 \cdot 3 \cdot 2 \cdot 1=24$

Permutation Example

Example 5:

Out of a group of 10 students, I choose 3 distinct students to give prizes to. How many ways can I select 3 students?

$$
n=10 \quad k=3
$$

$$
\begin{aligned}
P(n, k) & =\frac{n!}{(n-k)!} \\
P(10,3) & =\frac{10!}{(10-3)!} \\
& =\frac{10!}{7!} \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!} \\
& =10 \cdot 9 \cdot 8=720
\end{aligned}
$$

Permutation Example

Example 6:

University phone exchange starts with 641 - \qquad
What is the probability that a randomly selected phone number contains 7 distinct digits?
Sample space: (All possibilities for 4 chosen numbers)
$|\Omega|=$

Event: (4 chosen numbers are distinct - no repeats!)
$|A|=$
$P(A)=\frac{|A|}{|\Omega|}=$

Combination

Unordered Without Replacement

Select k objects out of n objects with no replacement where order does not matter.

$$
\Omega=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \in\{1, \ldots, n\}, x_{i} \neq x_{j}\right\}
$$

To derive $|\Omega|$ for this scenario, we can go back to how it was derived for permutations (where order mattered).

- Step 1: Select k objects from n (order doesn't matter)
- Step 2: Order the objects (there is k ! ways to order objects)
$P(n, k)=$ (number of ways to select k objects unordered) $\cdot k$!
Number of ways to select k objects unordered $=\frac{P(n, k)}{k!}=\frac{n!}{(n-k)!k!}$

Combination

Definition

A combination is a subset of k objects from n objects. This is another name for unordered without replacement scenario.

Theorem

$C(n, k)$, called the combination number, is the number of combinations of k objects chosen from n.

$$
C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

- $C(n, k)$ or $\binom{n}{k}$ is read " n choose k "

Combination Example

Example 7: Lottery (pick-five)
The lottery picks 5 numbers from $\{1, \ldots, 49\}$ without replacement as the "winning numbers". You choose 5 numbers and win if you pick at least 3 of the winning numbers.

1. What is the probability you match all 5 winning numbers?
2. What is the probability you win?

Easiest way to do combination problems is to draw a picture of the problem by visualizing a box of items you are selecting from. Break the box into sections according to the problems.

Here, we break the box into "winning" and "non-winning" numbers.

Combination Example

1. What is the probability you match all 5 winning numbers?

Event: To match all 5 winning numbers - we need to choose 5 numbers from "winning" and group, and 0 numbers from the "non-winning" group. This is done in ...

$$
|A|=\binom{5}{5} \cdot\binom{44}{0}=\frac{5!}{(5-5)!5!} \frac{44!}{(44-0)!0!}=\frac{5!}{0!5!} \frac{44!}{44!0!}=\frac{5!}{1 \cdot 5!} \frac{44!}{44!\cdot 1}=1
$$

Sample Space: How many total ways are there to choose 5 numbers from 49 numbers (all possibilities). This is done in ...

$$
|\Omega|=\binom{49}{5}=\frac{49!}{(49-5)!5!}=\frac{49!}{44!5!}=1,906,884
$$

$$
P(\text { match all })=\frac{\binom{5}{5} \cdot\binom{44}{0}}{\binom{49}{5}}=\frac{1}{1,906,884}=0.000005
$$

Combination Example

2. What is the probability you win? (Recall that you win if you match at least 3 "winning" numbers.)
$P($ win $)=P($ match at least 3$)=$
$P($ match 3$)+P($ match 4$)+P($ match 5$)$

Combination Example

Counting Summary

Method

\# of Possible Outcomes

Ordered with replacement
n^{k}
Ordered without replacement

$$
P(n, k)=\frac{n!}{(n-k)!}
$$

Unordered without replacement $\quad C(n, k)=\binom{n}{k}=\frac{n!}{(n-k)!k!}$

