Lecture 21
 Graphics/Visualizing Data

Manju M. Johny

STAT 330 - Iowa State University

Graphics

Visualizing Data

- Besides reporting numerical summaries to describe data, we can also provide graphical descriptions.
- The most common visualizations for numerical data are:

1. Histograms
2. Boxplots
3. Scatterplots

Histograms

Histograms

Histograms:

- Most common visualization for one numerical variable
- Can be used to identify potential outliers and anomalies by looking for major "gaps" in histogram

Construction:

1. Start with a data set $x_{1}, x_{2}, \ldots, x_{n}$
2. Divide the data into m intervals (usually of the same width) called "bins": $B_{1}, B_{2}, \ldots, B_{m}$
3. Count how many x 's fall into each bin.
4. Draw bars up to the above counts for each bin interval.

Number of Bins

Too many bins (bin width too small)

'Right' number of bins/bin width

Too few bins (bin width too big)

Histograms Cont.

- In the descriptive setting, histograms helps us understand where the data falls
- In the inferential setting, histograms can help us learn about the shape of the probability distribution that generated the data

Histogram Cont.

- To understand the shape of the probability distribution, it's useful to use scaled/probability histogram
- total area under histogram $=1$
- obtained by scaling the height of the histogram
- The Area of the $i^{\text {th }} \operatorname{Bin}\left(B_{i}\right)$ is ...
- Area $_{i}=$ height \cdot width of B_{i}
- Area $_{i}=\frac{\# \text { of } x^{\prime} \text { s in } B_{i}}{n}$

Then, height of $B_{i}=\frac{\# \text { of } x \text { 's in } B_{i}}{n \cdot w i d t h \text { of } B_{i}}$
This height gives estimate of probability of your x being in the particular bin.

Boxplots

Boxplots

Boxplots:

- Useful for comparing the same numerical variable between multiple groups
- Gives a systematic way to identify outliers

Construction:

1. 5-point summary: Calculate $\operatorname{Min}, Q_{1}$, Median, Q_{3}, Max
2. Box: draw a box between Q_{1} and $Q 3$, and line at median
3. Obtain "fences" at $Q_{1}-1.5(I Q R)$ and $Q_{3}+1.5(I Q R)$. \rightarrow box and all non-outlier values are in-between the fences.
4. Whiskers: draw a line from each end of the box out to the closest data value inside the "fence"
5. Outliers: data values outside of the "fences" are represented by dots - these are outliers

Boxplots Cont.

Boxplots Cont.

Scatterplots

Scatterplots

Scatterplots:

- Used to visualize relationship between 2 numerical variables plotted on (x, y)-plane
- $X=$ explanatory/predictor variable (x-axis)
- $Y=$ response/dependent variable (y-axis)
- When the x-axis is time, this is called a time plot (time series)

Construction:

1. Obtain x_{i} and y_{i} values for each $i^{\text {th }}$ subject
2. Arrange into (x, y) pairs: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$
3. Plot each (x, y) pair as a point

Scatterplots Cont.

Sugar vs. Calories for Cereal

Scatterplots Cont.

- In the descriptive setting, use scatterplots to understand the general relationship between 2 variables
- In the inferential setting, we develop a model for the relationship between 2 variables of the form:
$Y=g(X)+\epsilon$
where $g(\cdot)$ is some function, and ϵ is random error/noise
- Use scatterplots to help learn about the form of $g(\cdot)$

