Lecture 21

Graphics/Visualizing Data

Manju M. Johny

STAT 330 - Iowa State University

1/12

Graphics

Visualizing Data

(mean, median, s, etc)

 Besides reporting numerical summaries to describe data, we can also provide graphical descriptions.

• The most common visualizations for numerical data are:

1. Histograms

helps us understand

2. Boxplots

the data quickly

3. Scatterplots

2/12

Histograms

Histograms

Histograms:	Weight (165)
	110
 Most common visualization for one numerical variable 	145
 Can be used to identify potential outliers and anomalies by 	180
looking for major "gaps" in histogram	165

Construction:

- 1. Start with a data set x_1, x_2, \ldots, x_n
- 2. Divide the data into m intervals (usually of the same width) called "bins": B_1, B_2, \ldots, B_m
- 3. Count how many x's fall into each bin.
- 4. Draw bars up to the above counts for each bin interval.

3/12

Number of Bins

of Bins/
Bin width

can affect

Now Your

Nistogram

LOOKS

" oversmoothing"

"under smoothing"

Histograms Cont.

- In the descriptive setting, histograms helps us understand where the data falls
- In the inferential setting, histograms can help us learn about the shape of the probability distribution that generated the data

5/12

Histogram Cont.

- To understand the shape of the probability distribution, it's useful to use scaled/probability histogram
 - ullet total area under histogram =1
 - obtained by scaling the height of the histogram
- The Area of the i^{th} Bin (B_i) is ...
 - Area_i = height \cdot width of B_i
 - Area_i = $\frac{\# \text{ of } x \text{'s in } B_i}{n}$

Then, height of $B_i = \frac{\# \text{ of } x \text{'s in } B_i}{n \cdot \text{width of } B_i}$

This height gives estimate of probability of your x being in the particular bin.

Boxplots

Boxplots

Boxplots:

- Useful for comparing the same numerical variable between multiple groups
- Gives a systematic way to identify outliers

Construction:

- 1. 5-point summary: Calculate Min, Q_1 , Median, Q_3 , Max
- 2. Box: draw a box between Q_1 and Q_3 , and line at median $Q_3 = Q_3 Q_1$
- 3. Obtain "fences" at $Q_1 1.5(IQR)$ and $Q_3 + 1.5(IQR)$.
 - \rightarrow box and all non-outlier values are in-between the fences.
- 4. Whiskers: draw a line from each end of the box out to the closest data value inside the "fence"
- 5. Outliers: data values outside of the "fences" are represented by dots these are outliers

Boxplots Cont.

8/12

Boxplots Cont.

Scatterplots

Scatterplots

Scatterplots: • Used to visualize relationship between 2 numerical variables plotted on (x, y)-plane • $X = \exp[\operatorname{anatory/predictor variable}(x-\operatorname{axis})]$ • $Y = \operatorname{response/dependent variable}(y-\operatorname{axis})$

• When the x-axis is time, this is called a time plot (time series)

Construction:

- 1. Obtain x_i and y_i values for each i^{th} subject
- 2. Arrange into (x, y) pairs: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- 3. Plot each (x, y) pair as a point

Scatterplots Cont.

Sugar vs. Calories for Cereal

11 / 12

Scatterplots Cont.

- In the descriptive setting, use scatterplots to understand the general relationship between 2 variables
- In the inferential setting, we develop a model for the relationship between 2 variables of the form:

$$Y = g(X) + \epsilon$$

where $g(\cdot)$ is some function, and ϵ is random error/noise

• Use scatterplots to help learn about the form of $g(\cdot)$

$$g(X) = \beta_0 + \beta_1 x$$
(linear)

$$g(X) = \beta_0 + \beta_1 x + \beta_2 x^2$$

(quadratic)

12/12