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Inference Overview

Topics:
1. Estimation of parameters
Confidence intervals

Hypothesis testing

S

Prediction
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Estimation



Start with Xi,..., X, o fx(x), where fx(x) is some distribution

with some parameter(s) 6

In statistics, 8 is unknown, so we need to estimate it.
Definition

An estimator is a statistic, T(Xi,...,X,), that is used to learn
about an unknown parameter 6.

e The term “estimator” refers to the statistic as a function of
random variables Xi,..., X,

e Estimators usually get “hats”.

— 0 is an estimator of 6.
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Definition
An estimate is the observed value of the statistic used to learn

about an unknown parameter.

e The term “estimate” refers to the statistic as a function of
the observed data xi,...,x,
e It is a numeric value
Example 1: Xy, ..., X, < fx(x) with some E(X) = p (unknown).
You observe values 6, 7, 7, 8, 9, 10

e L = X is an estimator of

= w = 7.83 is an estimate of p

X1
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Sampling Distribution of the Estimator

e Since the estimator f is a function of R.V's, it is also
considered a R.V.

e Estimators have their own distribution called the sampling
distribution of 0

A

— The mean of the sampling distribution is E(6)
— The standard deviation of the sampling distribution is

A A

called the “standard error” = se(f) = 4/ var(0)

e We will make use of the sampling distribution in confidence
intervals and hypothesis testing
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Properties of Estimators




Properties of Estimators

How to tell if our estimator is “good”?
There are some properties of estimators we can look at:

e unbiasedness
e consistency
e mean squared error
Definition
The bias of an estimator 0 is Bias(d) = E(0 — 0).
An estimator @ is unbiased if Bias(0) = E(f — ) = 0.

Definition: Consistent

An estimator 0 is a consistent estimator of 0 if

lim P(|0 — 0] >¢) =0

n—oo
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Unbiased and Consistent Estimators

Earlier in the notes, we said that we should use
e X as an estimator for E(X) = p
e 52 as an estimator for Var(X) = o2
Theorem

X and S2 are both unbiased and consistent estimators for
parameters . and o2 respectively.

Proof: Let X,..., X, < fx(x) with E(X;) = and Var(X;) = o2

Unbiasedness:

ER)=EC Y X) = B X) = - S E(X) = - nou=p
Var(X) o2

P(|)_<—M|>€)§ 2 = —0as n— oo
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Mean Squared Error

A popular metric for comparing different estimators is the mean
squared error (MSE).

Definition: Mean Squared Error (MSE

The mean squared error (MSE) of an estimator is

MSE() = E[(0 — 0)?]

e It can be shown that MSE(f) = Bias?(f) + Var()
e This is usually easier to calculate

e Ideally, we want estimator to have small MSE (with small bias

and small variance).
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Example 2: X1,..., X, i N(u,0?). Want estimators for y1 and 2.

Consider two estimators for p:

1. =X

2. =X
Both estimators have sampling distribution that are normal dist.

Both estimators are unbiased

o £E(X1) =
— Bias(Xl) = E(X1 *M) = E(Xl) —,u:,u—,uzo
° E()_() =u

— Bias(X) = E(X —pu)=EX) —p=p—p=0
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Example Cont.

Compare the MSE of both estimators
Recall MSE(0) = E[(6 — )] = Bias?(0) + Var(f)
Variance of the estimators:

o Var(X;) = o?
o Var(X) = "72
Mean squared errors (MSE) of the estimators:

o MSE(X1) = Bias?(X1) + Var(Xy) = 0% + o2

o MSE(X) = Bias®(X) + Var(X) = 0% + =

n

MSE(X) < MSE(X;) — X is the “better" estimator for
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Statistical Model




Statistical Models

We want a model for our sample to use for making inference
Definition

A statistical model is the joint distribution of our sample. J

Recall:
e We've seen the joint distribution for 2 discrete R.V's:
PX,Y(Xay) - P(X:X’Y:y)
e If X, Y are independent, the the joint distribution can be
written as
PX,Y(va): P(X:X7Y:y)
=P(X=x)-P(Y=y)

= Px(x) - Py(y)
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Statistical Model Cont.

Let X1, ..., Xn 3 fi(x).

The joint distribution of our sample is

Fxe, - oxm) = [ [ ()
i=1

We can use the statistical model and data to obtain a single
estimate (point estimate) for the parameter(s) in our model.

— In statistics, this is called “fitting” the model (using "data”)

— In machine learning, this is called “learning” the model (using

“training data”)
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Example 3: Let X; = # of goals scored by the ISU womens's
soccer team in game /.

X1, Xn 2 fi(x)

We are interested in the probability the team scores more than 2
goals in a game.
How do we approach solving this problem?

1. Come up with a model for the sample.

2. Estimate the parameters of the model

3. Use fitted model to estimate the probability of scoring more

than 2 goals.
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Example Cont.

e X; = # of goals scored by the the soccer team in game /.
— X;'s are discrete random variables
e A reasonable model is then the Poisson distribution

e The joint distribution is

Fxa,.. o xa) = [ [ ()
i=1
B n e*)\AX/
N l]illz X,'!
e—”/\)\27:1 Xi
[T xi!
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Example Cont.

e Since, for Poisson distribution, E(X) = A, it makes sense to
use the estimator X for \.

e Observed values: 0, 0, 1, 0, 1, 2, 2,0, 1, 1
e My estimate of \:
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