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Inference Overview

Topics:

1. Estimation of parameters

2. Confidence intervals

3. Hypothesis testing

4. Prediction
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Estimation



Estimator

Start with X1, . . . ,Xn
iid∼ fX (x), where fX (x) is some distribution

with some parameter(s) θ

In statistics, θ is unknown, so we need to estimate it.

Definition

An estimator is a statistic, T (X1, . . . ,Xn), that is used to learn

about an unknown parameter θ.

• The term “estimator” refers to the statistic as a function of

random variables X1, . . . ,Xn

• Estimators usually get “hats”.

→ θ̂ is an estimator of θ.
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Estimate

Definition

An estimate is the observed value of the statistic used to learn

about an unknown parameter.

• The term “estimate” refers to the statistic as a function of

the observed data x1, . . . , xn

• It is a numeric value

Example 1: X1, . . . ,Xn
iid∼ fX (x) with some E (X ) = µ (unknown).

You observe values 6, 7, 7, 8, 9, 10

• µ̂ = X̄ is an estimator of µ

• x̄ = 6+7+7+8+9+10
6 = 7.83 is an estimate of µ
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Sampling Distribution of the Estimator

• Since the estimator θ̂ is a function of R.V’s, it is also

considered a R.V.

• Estimators have their own distribution called the sampling
distribution of θ̂

→ The mean of the sampling distribution is E (θ̂)

→ The standard deviation of the sampling distribution is

called the “standard error” = se(θ̂) =
√

var(θ̂)

• We will make use of the sampling distribution in confidence

intervals and hypothesis testing
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Properties of Estimators



Properties of Estimators

How to tell if our estimator is “good”?

There are some properties of estimators we can look at:

• unbiasedness

• consistency

• mean squared error

Definition

The bias of an estimator θ̂ is Bias(θ̂) = E (θ̂ − θ).

An estimator θ̂ is unbiased if Bias(θ̂) = E (θ̂ − θ) = 0.

Definition: Consistent

An estimator θ̂ is a consistent estimator of θ if

lim
n→∞

P(|θ̂ − θ| > ε) = 0
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Unbiased and Consistent Estimators

Earlier in the notes, we said that we should use

• X̄ as an estimator for E (X ) = µ

• S2 as an estimator for Var(X ) = σ2

Theorem

X̄ and S2 are both unbiased and consistent estimators for

parameters µ and σ2 respectively.

Proof: Let X1, . . . ,Xn
iid∼ fX (x) with E (Xi ) = µ and Var(Xi ) = σ2

Unbiasedness:

E (X̄ ) = E (
1

n

∑
Xi ) =

1

n
E (

∑
Xi ) =

1

n

∑
E (Xi ) =

1

n
· n · µ = µ

Consistency:

P(|X̄ − µ| > ε) ≤ Var(X̄ )

ε2
=

σ2

n · ε2
→ 0 as n→∞
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Mean Squared Error

A popular metric for comparing different estimators is the mean

squared error (MSE).

Definition: Mean Squared Error (MSE

The mean squared error (MSE) of an estimator is

MSE (θ̂) = E [(θ̂ − θ)2]

• It can be shown that MSE (θ̂) = Bias2(θ̂) + Var(θ̂)

• This is usually easier to calculate

• Ideally, we want estimator to have small MSE (with small bias

and small variance).

8 / 15



Example

Example 2: X1, . . . ,Xn
iid∼ N(µ, σ2). Want estimators for µ and σ2.

Consider two estimators for µ:

1. µ̂1 = X1

2. µ̂2 = X̄

Both estimators have sampling distribution that are normal dist.

Both estimators are unbiased

• E (X1) = µ

→ Bias(X1) = E (X1 − µ) = E (X1)− µ = µ− µ = 0

• E (X̄ ) = µ

→ Bias(X̄ ) = E (X̄ − µ) = E (X̄ )− µ = µ− µ = 0
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Example Cont.

Compare the MSE of both estimators

Recall MSE (θ̂) = E [(θ̂ − θ)2] = Bias2(θ̂) + Var(θ̂)

Variance of the estimators:

• Var(X1) = σ2

• Var(X̄ ) = σ2

n

Mean squared errors (MSE) of the estimators:

• MSE (X1) = Bias2(X1) + Var(X1) = 02 + σ2

• MSE (X̄ ) = Bias2(X̄ ) + Var(X̄ ) = 02 + σ2

n

MSE (X̄ ) < MSE (X1) → X̄ is the “better” estimator for µ
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Statistical Model



Statistical Models

We want a model for our sample to use for making inference

Definition

A statistical model is the joint distribution of our sample.

Recall:

• We’ve seen the joint distribution for 2 discrete R.V’s:

PX ,Y (x , y) = P(X = x ,Y = y)

• If X , Y are independent, the the joint distribution can be

written as

PX ,Y (x , y) = P(X = x ,Y = y)

= P(X = x) · P(Y = y)

= PX (x) · PY (y)

11 / 15



Statistical Model Cont.

Let X1, . . . ,Xn
iid∼ fX (x).

The joint distribution of our sample is

f (x1, . . . , xn) =
n∏

i=1

fX (xi )

We can use the statistical model and data to obtain a single

estimate (point estimate) for the parameter(s) in our model.

→ In statistics, this is called “fitting” the model (using ”data”)

→ In machine learning, this is called “learning” the model (using

“training data”)
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Example

Example 3: Let Xi = # of goals scored by the ISU womens’s

soccer team in game i .

X1, . . . ,Xn
iid∼ fX (x)

We are interested in the probability the team scores more than 2

goals in a game.

How do we approach solving this problem?

1. Come up with a model for the sample.

2. Estimate the parameters of the model

3. Use fitted model to estimate the probability of scoring more

than 2 goals.
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Example Cont.

• Xi = # of goals scored by the the soccer team in game i .

→ Xi ’s are discrete random variables

• A reasonable model is then the Poisson distribution

• The joint distribution is

f (x1, . . . , xn) =
n∏

i=1

fX (xi )

=
n∏

i=1

e−λλxi

xi !

=
e−nλλ

∑n
i=1 xi∏n

i=1 xi !
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Example Cont.

• Since, for Poisson distribution, E (X ) = λ, it makes sense to

use the estimator X̄ for λ.

• Observed values: 0, 0, 1, 0, 1, 2, 2, 0, 1, 1

• My estimate of λ:
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