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Inference Overview

Topics:

1. Estimation of parameters
2. Confidence intervals

3. Hypothesis testing
4

. Prediction
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Estimation

Start with X1,..., X, % fx(x), where fx(x) is some distribution

with some parameter(s) 6
In statistics, 6 is unknown, so we need to estimate it.
Definition

An estimator is a statistic, T(Xi,...,X,), that is used to learn
about an unknown parameter 6.

e The term “estimator” refers to the statistic as a function of
random variables Xi,..., X,

e Estimators usually get “hats”.

—+ @ is an estimator of 6.
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Definition i
An estimate is the observed value of the statistic used to learn 7
about an unknown parameter.

e The term “estimate” refers to the statistic as a function of

the observed data xi,..., X,
e It is a numeric value
Example 1: X,..., X, -9 fx(x) with some E(X) = p (unknown).
You observe values 6, 7, 7, 8, 9, 10

e .= X is an estimator of

o x = SELEIEBEIHI0 _ 7 83 js an estimate of y
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Sampling Distribution of the Estimator

(vandom veviable )
e Since the estimator @ is a function of R.V's, it is also
considered a R.V.

e Estimators have their own distribution called the sampling
distribution of 6

— The mean of the sampling distribution is £(6)
— The standard deviation of the sampling distribution is

called the “standard error” = se(#) = 1/ var(9)

e We will make use of the sampling distribution in confidence
intervals and hypothesis testing
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Properties of Estimators

Properties of Estimators

How to tell if our estimator is “good"?
There are some properties of estimators we can look at:

e unbiasedness

e consistency .
N

e mean squared error t(g)-E(8) = £(0)-6

/)

E(0 —0).

Definition

The bias of an estimator @ is Bias(f)
4

An estimator @ is unbiased if Bias(f) = E(9 — 6) = 0.

Definition: Consistent 550

An estimator @ is a consistent estimator of 6 if (for any %)

lim P10 6] >¢) =0 |
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Unbiased and Consistent Estimators

Earlier in the notes, we said that we should use

e X as an estimator for E(X) = pu

e 52 as an estimator for Var(X) = o2

Theorem

X and S? are both unbiased and consistent estimators for
parameters 1 and o2 respectively.

Proof: Let Xi,..., Xy < fx(x) with E(X;) = p and Var(X;) = o2

. "~ Unbiasedness:
3 oy — (L v 1 yo1 SO
Fo¢ E(X)_E(HZX,)_nE(ZX,)_nZE(X,)_n n-p=p

Consistency:

S Var(X 2
P(|X — u| >¢€) < arg ): 02~—>Oasn—>oo
€ n-e
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Cwoychay's Tnequalivy

Mean Squared Error

A popular metric for comparing different estimators is the mean
squared error (MSE).

Definition: Mean Squared Error (MSE

The mean squared error (MSE) of an estimator is

MSE(0) = E[(0 — 6)?]

" & - Easi{‘( o
e It can be shown that MSE() = Bias®(0) + Var(6) calcn late
e This is usually easier to calculate

e ldeally, we want estimator to have small MSE (with small bias
and small variance).
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o Indepandent & ideutically aisihd
iid

Example 2: Xi,..., X, ~ N(u,0%). Want estimators for u and o2.

Consider two estimators for p:

L. ﬁ =X o o\kf? X~ N (o)
2. fio=X \S Wt YNN(N:DQ/VI)
by cLT

Both estimators have sampling distribution that are normal dist.

Both estimators are unbiased

o E(X1)=p ottt
X\M“’“NS
— Bias(Xy) = E(Xy — p) = E(X1) —p=p— =0 29 o2
_ N
E(X) = R
o E(X)=p Sia

— Bias(X) = E(XX —p) = E(X) —p=p—p=0
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Example Cont.

- Compare the MSE of both estimators

Fov N -0
" Recall MSE(0) = E[(6 — 0)?] = Bias?() + Var(0
I s )
&> Variance of the estimators: already ;
n N s

. s—

W e Var(Xy) = o2

—-—

vt S e Var(X) =2
% Mean squared errors (MSE) of the estimators:

® ° MSE(Xl):Bias( 1) + Var(X )—02+02:O’
o MSE(X) = Bias?>(X) + Var(X) =02 + & = o ¥,

MSE(X) < MSE(X;) — X is the “better” estimator for p
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Statistical Model

Statistical Models

We want a model for our sample to use for making inference
Definition

A statistical model is the joint distribution of our sample. j

Recall:
e We've seen the joint distribution for 2 discrete R.V's:
Py vl y) = PIX =, ¥ =y)

e If X, Y are independent, the the joint distribution can be

written as " s
Prylay) =PX=xY=y) = ™ au ‘tV\(MP’LVO\\dffc

n

=P(X=x)-P(Y=y) it = [l
= Px(x) - Py(y) pMavgne



Statistical Model Cont.

e ndep. & ‘uckevﬂ—icx\\v drstributedk
Let Xi,..., X ~ fx(x).

The joint distribution of our sample is

o S H fx (i)
i=1

We can use the statistical model and data to obtain a single
estimate (point estimate) for the parameter(s) in our model.

— In statistics, this is called “fitting” the model (using "data")

— In machine learning, this is called “learning” the model (using
“training data")
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Example 3: Let X; = # of goals scored by the ISU womens's
soccer team in game /.

Xl,...,X,, ”f\CJ/ fx(X)

We are interested in the probability the team scores more than 2
goals in a game.

How do we approach solving this problem?

1. Come up with a model for the sample.
2. Estimate the parameters of the model

3. Use fitted model to estimate the probability of scoring more
than 2 goals.
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Example Cont.

e X; = 7 of goals scored by the the soccer team In game /.

\
— X;'s are discrete random variables X)-. Y ~Pos (%)
e A reasonable model is then the Poisson distribution ~ For @ach Xt /o
S _>\ ¢
e The joint distribution is pA)= € A
f(Xl, . ,Xn) = H fx(X,')
i=1
B 1 e—)\)\x,
W
e—n)\)\zl_l X
Hi:l Xi
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Example Cont.

e Since, for Poisson distribution, E(X) = A, it makes sense to

use the estimator X for ).
e Observed values: 0, 0, 1, 0, 1, 2, 2, 0, 1, 1
e My estimate of A:
A I
Es‘\'"\mw\'_gx ol N1 A= X
Eovimake of A = % =038

NIW We  QuA  assuwme O wWwde| % & Pols (A=0.8)

Whud 16 A r\)vobaw\ﬂﬂ of- Scoring Mowg fMan 2 prIvis
P(X>2) = | —P(XR€2)
= 0.04%F
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