Lecture 23

Method of Moments \& Maximum Likelihood Estimation

Manju M. Johny

STAT 330 - Iowa State University

Estimating Parameters

2 General Methods for estimating parameters:

1. Method of moments estimation (MoM)
2. Maximum likelihood estimation (MLE)

Method of Moments (MoM)

Method of Moments (MoM)

Definition:

- The $k^{t h}$ moment of a R.V X is defined as $\mu_{k}=E\left(X^{k}\right)$
- The $k^{\text {th }}$ sample moment is defined as $m_{k}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$

The method of moments (MoM) estimators for parameters are found by equating (known) sample moments to (unknown) population moments, and then solving for the parameters in terms of the data.

- If our model has more than one unknown parameter, we need to make equations with more than one moment.
- In general, need k equations to derive MoM estimators for k parameters.

MOM Cont.

To obtain MoM estimators for k parameters: Set the sample moments $\left(m_{k}\right)$ equal to population moments $\left(\mu_{k}\right)$, and solve.

- $m_{1}=\mu_{1} \rightarrow \frac{1}{n} \sum x_{i}=E(X)$
- $m_{2}=\mu_{2} \rightarrow \frac{1}{n} \sum x_{i}^{2}=E\left(X^{2}\right)$
\vdots
- $m_{k}=\mu_{k} \rightarrow \frac{1}{n} \sum x_{i}^{k}=E\left(X^{k}\right)$

' Note:

- MoM estimators may be biased
- Sometimes you can get estimates outside of parameter space

MoM Examples

MoM Example

Example 1: Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Geo}(p)$
Estimate one parameter $p \rightarrow$ need the first moment.

- $1^{\text {st }}$ (population) moment: $\mu_{1}=E(X)=\frac{1}{p}$.
- $1^{\text {st }}$ sample moment is $m_{1}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}$

Set $1^{\text {st }}$ moment equal $1^{\text {st }}$ sample moment, and solve for p.

$$
\frac{1}{p}=\bar{X} \rightarrow \hat{p}_{M o M}=\frac{1}{\bar{X}}
$$

MoM Examples Cont.

Example 2: Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$
Estimate two parameters \rightarrow need first two moments
Set the first two moments equal to the first two sample moments.

1. $\frac{1}{n} \sum_{i=1}^{n} X_{i}=E(X)$
2. $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}=E\left(X^{2}\right)$

For our random variables, $E(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$
From Eq 1, we have $\frac{1}{n} \sum X_{i}=E(X)=\mu$
$\rightarrow \hat{\mu}_{\text {MoM }}=\frac{1}{n} \sum X_{i}$
$\rightarrow \hat{\mu}_{M o M}=\bar{X}$

MoM Examples Cont.

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2} \rightarrow E\left(X^{2}\right)=\operatorname{Var}(X)+E(X)^{2}=\sigma^{2}+\mu^{2}
$$

From Eq 2. we have:

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} & =E\left(X^{2}\right)=\sigma^{2}+\mu^{2} \\
\rightarrow \sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\mu^{2} \\
\rightarrow \hat{\sigma}_{M o M}^{2} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\hat{\mu}_{M o M}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}-\bar{X}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)

Likelihood Function

We have $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} f_{X}(x)$, where $f_{X}(x)$ has (unknown) parameter θ.

The model for our data is the joint distribution of X_{1}, \ldots, X_{n}

$$
f_{X}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X}\left(x_{i}\right)
$$

When the joint distribution is viewed as a function of the unknown parameter, it is referred to as the likelihood function

$$
\mathcal{L}(\theta)=\prod_{i=1}^{n} f_{X}\left(x_{i}\right)
$$

Likelihood Example

Example 3: $X_{1} \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Pois}(\lambda)$
The marginal distribution of each X_{i} is

$$
f_{X}(x)=\frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!}
$$

The joint distribution/likelihood function is

$$
\begin{aligned}
\mathcal{L}(\lambda)=f\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} f_{X}\left(x_{i}\right) \\
& =\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_{i}}}{x_{i}!} \\
& =\frac{e^{-n \lambda} \lambda \sum_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}!}
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)

Definition

A maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ of θ is the function that "maximizes the likelihood (probability) of the data"

Thus, the MLE maximizes the joint distribution model or likelihood function:

$$
\hat{\theta}_{M L e}=\underset{\theta \in \Theta}{\operatorname{argmax}} \mathcal{L}(\theta)=\underset{\theta \in \Theta}{\operatorname{argmax}} \prod_{i=1}^{n} f\left(x_{i}\right)
$$

MLE Examples

Example 4: Flip a coin 10 times. Let X be the $\#$ of heads obtained. A reasonable model for X is $\operatorname{Bin}(n=10, p)$ where p is our unknown parameter that we would like to estimate.

Suppose we observe the value $x=3$. (only 1 data value).
Since there's only 1 data value, the likelihood/joint distribution is just the marginal distribution $f(x)$:

$$
\begin{aligned}
\mathcal{L}(p)=f(x) & =\binom{10}{x} p^{x}(1-p)^{10-x} \\
& =\binom{10}{3} p^{x}(1-p)^{10-3} \\
& =120 p^{3}(1-p)^{7}
\end{aligned}
$$

MLE Examples Cont.

What value of p maximizes the likelihood?

General Calculation of MLE

- Maximizing the likelihood from $L(\theta)$ when there are multiple observed values becomes difficult.
- The common trick is to use the log-likelihood function instead:

$$
\ell(\theta)=\log \mathcal{L}(\theta)
$$

where $\ell(\cdot)$ is the natural-log
\rightarrow Since $\ell(\cdot)$ is increasing, the same θ that maximizes log-likelihood $\ell(\cdot)$ also maximizes the likelihood $\mathcal{L}(\theta)$

- Use calculus to find the maximum of $\ell(\theta)$

General Calculation of MLE cont.

Finding MLE:

1. Find the likelihood function: $\mathcal{L}(\theta)=\prod_{i=1}^{n} f\left(x_{i}\right)$
2. Find the \log-likelihood function: $\ell(\theta)=\log \mathcal{L}(\theta)$
3. Take the first derivative: $\ell^{\prime}(\theta)=\frac{d}{d \theta} \ell(\theta)$
4. Set $\ell^{\prime}(\theta)=0$ and solve for θ
\rightarrow this is your $\hat{\theta}_{\text {MLE }}$
5. Check if second derivative $\ell^{\prime \prime}(\theta)<0$ to make sure $\hat{\theta}_{M L E}$ is maximum

MLE Examples

MLE Examples

Example 5: Roll a (6-sided) die until you get a 6, and record the number of rolls. Repeat for 100 trials. For $i=1, \ldots 100$,

$$
\begin{aligned}
X_{i}= & \# \text { of rolls until you obtain a } 6 \text { in the } i^{t h} \text { trial } \\
& X_{i} \stackrel{i i d}{\sim} G e o(p) \text { and } f\left(x_{i}\right)=p(1-p)^{x_{i}-1}
\end{aligned}
$$

Data:

x	1	2	3	4	5	6	7	8	9
$\#$	18	20	8	9	9	5	8	3	5
x	11	14	15	16	17	20	21	27	29
$\#$	3	3	3	1	1	1	1	1	1

MLE Examples Cont.

1. Find the likelihood function $\mathcal{L}(p)$:

$$
\mathcal{L}(p)=\prod_{i=1}^{n} f\left(x_{i}\right)=\prod_{i=1}^{n} p(1-p)^{x_{i}-1}=p^{n}(1-p)^{\sum_{i=1}^{n} x_{i}-n}
$$

2. Find the log-likelihood function $\ell(p)=\log \mathcal{L}(p)$:

$$
\ell(p)=\log \mathcal{L}(p)
$$

MLE Examples Cont.

3. Take the $1^{\text {st }}$ derivative w.r.t p : $\ell^{\prime}(p)$:

$$
\ell^{\prime}(p)=\frac{d}{d p} \ell(p)=\frac{d}{d p} n \log (p)+\left(\sum_{i=1}^{n} x_{i}-n\right) \log (1-p)
$$

MLE Example

4. Set $\ell^{\prime}(p)=0$ and solve for p :

$$
\frac{d}{d p} \ell(p) \stackrel{\text { set }}{=} 0
$$

MLE Examples Cont.

5. $2^{\text {nd }}$ derivative test to confirm we have maximum:

$$
\frac{d^{2}}{d p^{2}} \ell(p)
$$

MLE Example Cont.

Plug in the data into our MLE:

