Lecture 23

Method of Moments & Maximum Likelihood Estimation

Manju M. Johny

STAT 330 - Iowa State University

2 General Methods for estimating parameters:

- 1. Method of moments estimation (MoM)
- 2. Maximum likelihood estimation (MLE)

Method of Moments (MoM)

Method of Moments (MoM)

Definition:

- The k^{th} moment of a R.V X is defined as $\mu_k = E(X^k)$
- The k^{th} sample moment is defined as $m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

The method of moments (MoM) estimators for parameters are found by equating (known) sample moments to (unknown) population moments, and then solving for the parameters in terms of the data.

- If our model has more than one unknown parameter, we need to make equations with more than one moment.
- In general, need k equations to derive MoM estimators for k parameters.

To obtain MoM estimators for k parameters: Set the sample moments (m_k) equal to population moments (μ_k) , and solve.

•
$$m_1 = \mu_1 \rightarrow \frac{1}{n} \sum x_i = E(X)$$

• $m_2 = \mu_2 \rightarrow \frac{1}{n} \sum x_i^2 = E(X^2)$
:

•
$$m_k = \mu_k \rightarrow \frac{1}{n} \sum x_i^k = E(X^k)$$

' Note:

- MoM estimators may be biased
- Sometimes you can get estimates outside of parameter space

MoM Examples

Example 1: Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Geo(p)$

Estimate one parameter $p \rightarrow$ need the first moment.

- 1st (population) moment: $\mu_1 = E(X) = \frac{1}{p}$.
- 1^{st} sample moment is $m_1 = \frac{1}{n} \sum_{i=1}^n X_i = \bar{X}$

Set 1^{st} moment equal 1^{st} sample moment, and solve for p.

$$rac{1}{p} = ar{X}
ightarrow \hat{p}_{MoM} = rac{1}{ar{X}}$$

Example 2: Let
$$X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$$

Estimate two parameters \rightarrow need first two moments

Set the first two moments equal to the first two sample moments.

1. $\frac{1}{n} \sum_{i=1}^{n} X_i = E(X)$ 2. $\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E(X^2)$

For our random variables, $E(X) = \mu$ and $Var(X) = \sigma^2$ From Eq 1, we have $\frac{1}{n} \sum X_i = E(X) = \mu$ $\rightarrow \hat{\mu}_{MoM} = \frac{1}{n} \sum X_i$ $\rightarrow \hat{\mu}_{MoM} = \bar{X}$

MoM Examples Cont.

 $Var(X) = E(X^2) - E(X)^2 \rightarrow E(X^2) = Var(X) + E(X)^2 = \sigma^2 + \mu^2$ From Eq 2. we have:

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} = E(X^{2}) = \sigma^{2} + \mu^{2}$$

 $\rightarrow \sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \mu^{2}$
 $\rightarrow \hat{\sigma}_{MoM}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \hat{\mu}_{MoM}^{2}$
 $= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \bar{X}^{2}$
 $= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$

Maximum Likelihood Estimation (MLE)

We have $X_1, \ldots, X_n \stackrel{iid}{\sim} f_X(x)$, where $f_X(x)$ has (unknown) parameter θ .

The model for our data is the *joint distribution* of X_1, \ldots, X_n

$$f_X(x_1,\ldots,x_n)=\prod_{i=1}^n f_X(x_i)$$

When the joint distribution is viewed as a function of the unknown parameter, it is referred to as the *likelihood function*

$$\mathcal{L}(\theta) = \prod_{i=1}^n f_X(x_i)$$

Likelihood Example

Example 3:
$$X_1 \dots, X_n \stackrel{iid}{\sim} Pois(\lambda)$$

The marginal distribution of each X_i is

$$f_X(x) = \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}$$

The joint distribution/likelihood function is

$$\mathcal{L}(\lambda) = f(x_1, \dots, x_n) = \prod_{i=1}^n f_X(x_i)$$
$$= \prod_{i=1}^n \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}$$
$$= \frac{e^{-n\lambda} \lambda \sum_{i=1}^n x_i!}{\prod_{i=1}^n x_i!}$$

Definition

A maximum likelihood estimator $\hat{\theta}_{MLE}$ of θ is the function that "maximizes the likelihood (probability) of the data"

Thus, the MLE maximizes the joint distribution model or likelihood function:

$$\hat{ heta}_{MLe} = \operatorname*{argmax}_{ heta \in \Theta} \mathcal{L}(heta) = \operatorname*{argmax}_{ heta \in \Theta} \prod_{i=1}^{''} f(x_i)$$

Example 4: Flip a coin 10 times. Let X be the # of heads obtained. A reasonable model for X is Bin(n = 10, p) where p is our unknown parameter that we would like to estimate.

Suppose we observe the value x = 3. (only 1 data value).

Since there's only 1 data value, the likelihood/joint distribution is just the marginal distribution f(x):

$$\mathcal{L}(p) = f(x) = {\binom{10}{x}} p^x (1-p)^{10-x}$$
$$= {\binom{10}{3}} p^x (1-p)^{10-3}$$
$$= 120p^3 (1-p)^7$$

What value of p maximizes the likelihood?

General Calculation of MLE

- Maximizing the likelihood from L(θ) when there are multiple observed values becomes difficult.
- The common trick is to use the *log-likelihood function* instead:

$$\ell(\theta) = log \mathcal{L}(\theta)$$

where $\ell(\cdot)$ is the natural-log

 \rightarrow Since $\ell(\cdot)$ is increasing, the same θ that maximizes log-likelihood $\ell(\cdot)$ also maximizes the likelihood $\mathcal{L}(\theta)$

• Use calculus to find the maximum of $\ell(\theta)$

Finding MLE:

- 1. Find the likelihood function: $\mathcal{L}(\theta) = \prod_{i=1}^{n} f(x_i)$
- 2. Find the log-likelihood function: $\ell(\theta) = \log \mathcal{L}(\theta)$
- 3. Take the first derivative: $\ell'(\theta) = \frac{d}{d\theta}\ell(\theta)$

4. Set
$$\ell'(\theta) = 0$$
 and solve for θ

 \rightarrow this is your θ_{MLE}

5. Check if second derivative $\ell^{''}(\theta) < 0$ to make sure $\hat{\theta}_{MLE}$ is maximum

MLE Examples

Example 5: Roll a (6-sided) die until you get a 6, and record the number of rolls. Repeat for 100 trials. For i = 1, ... 100,

$$X_i = \#$$
 of rolls until you obtain a 6 in the $i^{th}trial$
 $X_i \stackrel{iid}{\sim} Geo(p)$ and $f(x_i) = p(1-p)^{x_i-1}$

Data:

x	1	2	3	4	5	6	7	8	9
#	18	20	8	9	9	5	8	3	5
	11								
#	3	3	3	1	1	1	1	1	1

MLE Examples Cont.

1. Find the likelihood function $\mathcal{L}(p)$:

$$\mathcal{L}(p) = \prod_{i=1}^{n} f(x_i) = \prod_{i=1}^{n} p(1-p)^{x_i-1} = p^n (1-p)^{\sum_{i=1}^{n} x_i - n}$$

2. Find the log-likelihood function $\ell(p) = \log \mathcal{L}(p)$:

 $\ell(p) = log \mathcal{L}(p)$

3. Take the 1st derivative w.r.t p: $\ell'(p)$:

$$\ell'(p) = \frac{d}{dp}\ell(p) = \frac{d}{dp}nlog(p) + (\sum_{i=1}^{n} x_i - n)log(1-p)$$

MLE Example

4. Set $\ell'(p) = 0$ and solve for p:

$$\frac{d}{dp}\ell(p) \stackrel{set}{=} 0$$

MLE Examples Cont.

5. 2^{nd} derivative test to confirm we have maximum: $\frac{d^2}{dp^2}\ell(p)$

Plug in the data into our MLE: