Lecture 24
 Confidence Intervals

Manju M. Johny

STAT 330 - Iowa State University

Confidence Intervals

Confidence Intervals

- MLE gives us a "point estimate" of the unknown parameter.
- But $\hat{\theta}$ probably won't exactly equal θ due to sampling error.
$\rightarrow P(\theta=\hat{\theta})=0$
- Create a confidence interval to give range of reasonable values for the unknown parameter θ.

Example 1: Polling

Today's poll shows 58% of people favor the new bill. The margin of error is $\pm 3 \%$.

The confidence interval for the proportion of people that favor the bill is $[0.55,0.61]$.

Confidence Interval

Definition

A random interval $[a, b]$ is a $(1-\alpha) 100 \%$ confidence interval for the parameter θ if it contains θ with probability $(1-\alpha)$

$$
P(a \leq \theta \leq b)=1-\alpha
$$

- $(1-\alpha)$ is called the confidence level
- When you estimate an unknown parameter θ, it should be accompanied by a confidence interval
- Interpretation: We are $[(1-\alpha) \%]$ confident that the [insert population parameter + context] is between [insert interval + units].

Constructing Confidence Intervals

In this class, we will construct normal distribution based intervals.
Suppose we have an estimator $\hat{\theta}$ for unknown parameter θ.

1. $\hat{\theta}$ is unbiased: $E(\hat{\theta})=\theta$
2. $\hat{\theta}$ follows a normal distribution.

We can standardize $\hat{\theta}$ to get

$$
Z=\frac{\hat{\theta}-\theta}{S E(\hat{\theta})} \sim N(0,1)
$$

where $S E(\hat{\theta})=\sqrt{\operatorname{Var}(\hat{\theta})}=$ standard deviation of $\hat{\theta}$

Constructing Confidence Intervals

Let $z_{\alpha / 2}$ be the $1-\frac{\alpha}{2}$ quantile of the standard normal distribution.

$$
P\left(-z_{\alpha / 2} \leq \frac{\hat{\theta}-\theta}{\operatorname{SE}(\hat{\theta})} \leq z_{\alpha / 2}\right)=1-\alpha
$$

Constructing Confidence Intervals

Isolating θ in the middle, we get

$$
P\left(\hat{\theta}-z_{\alpha / 2} S E(\hat{\theta}) \leq \theta \leq \hat{\theta}+z_{\alpha / 2} S E(\hat{\theta})\right)=1-\alpha
$$

Thus, a $(1-\alpha) 100 \%$ confidence interval for θ is

$$
\hat{\theta} \pm z_{\alpha / 2} S E(\hat{\theta})
$$

Common choices for α are $0.01,0.05$, and 0.1

$(1-\alpha) 100 \%$	80	90	95	98	99
$z_{\alpha / 2}$	1.282	1.645	1.96	2.326	2.576

Constructing Confidence Intervals Cont.

We will make confidence intervals for four cases:

1. μ (population mean)
2. p (population proportion)
3. $\mu_{1}-\mu_{2}$ (difference in population means)
4. $p_{1}-p_{2}$ (difference in population proportions)

Confidence intervals for all 4 of the above cases can be constructed using normal distribution based inference.

Follow the same general procedure to construct these intervals.

Confidence Interval for Mean

Confidence Interval for μ

Confidence interval for the population mean

$$
X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} f_{X}(x) \text { with } E\left(X_{i}\right)=\mu \text { and } \operatorname{Var}\left(X_{i}\right)=\sigma
$$

First, we estimate μ using the statistic \bar{X}. From CLT, we know

- $\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
- $S E(\bar{X})=\sqrt{\operatorname{Var}(\bar{X})}=\sqrt{\frac{\sigma^{2}}{n}}=\frac{\sigma}{\sqrt{n}}$

A $(1-\alpha) 100 \%$ confidence interval for μ is

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

In most cases, the population standard deviation σ will be unknown. Replace σ with the sample standard deviation s.

$$
\bar{X} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

Confidence Interval for μ Cont.

If we want a 95% confidence interval, then

$$
\begin{aligned}
& 1-\alpha=0.95 \\
& \rightarrow \alpha=0.05 \\
& \rightarrow \alpha / 2=0.025
\end{aligned}
$$

$z_{\alpha / 2}=z_{0.025}$ is the $0.975^{\text {th }}$ quantile of the $N(0,1)$ distribution.
\rightarrow Using the z-table, we get $z_{0.025}=1.96$
The 95% confidence interval for μ is

$$
\begin{array}{ll}
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}} & \text { when } \sigma \text { is known } \\
\bar{X} \pm 1.96 \frac{s}{\sqrt{n}} & \text { when } \sigma \text { is unknown }
\end{array}
$$

Example

Example 2: A random sample of 50 batteries were taken for a particular brand. For the sample, the mean lifetime is 72.5 hours and variance is 19.3 hours 2. Find a 95% confidence interval for the true mean lifetime of batteries from that particular brand.

Example Cont.

Selecting Sample Size for Means

How to decide sample size?

- Can choose the sample size n to obtain a desired level of confidence \& width for our confidence interval.
- Margin or error (Δ) is half the width of the confidence interval margin of error $=\Delta=z_{\alpha / 2} S E(\bar{X})=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$
- The bigger the sample size, the smaller the standard error of the estimator, and smaller the size of our interval

To attain a particular margin of error Δ, we need a sample size

$$
n \geq\left(\frac{z_{\alpha / 2} \sigma}{\Delta}\right)^{2}
$$

Confidence Interval for Proportion

Confidence Interval for p

Confidence interval for the population proportion

- In this scenario, we want to estimate the proportion of population belonging to a particular category.
- Any individual in the population either belongs to the category of interest (" 1 "), or they don't ("0").
- Thus, we can think of each random variable X as a Bernoulli distribution with unknown parameter p
- We ultimately want to estimate and find a confidence interval for p.

Confidence Interval for p Cont.

$X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bern}(p)$
First, estimate p using the statistic $\hat{p}=\frac{\sum X_{i}}{n}=$ sample proportion.

- $E(\hat{p})=E\left(\frac{\sum_{i=1}^{n} X_{i}}{n}\right)=\frac{1}{n} E\left(\sum_{i=1}^{n} X_{i}\right)=\frac{1}{n} n p=p$ (unbiased)
- $\operatorname{Var}(\hat{p})=\operatorname{Var}\left(\frac{\sum X_{i}}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(\sum X_{i}\right)=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}$

$$
\rightarrow S E(\hat{p})=\sqrt{\operatorname{Var}(\hat{p})}=\sqrt{\frac{p(1-p)}{n}}
$$

Since \hat{p} is the mean of the Bernoulli X^{\prime} s, CLT for means applies

$$
\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)
$$

Thus a ($1-\alpha$) 100% confidence interval for p is

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Example

Example 3: In a random sample of 1000 U.S. adults, 38.8% stated they believed in the existence of ghosts. Find a 90% confidence interval for the population proportion of all U.S. adults who believe in the existence of ghosts.

Selecting Sample Size for Proportions

How to decide sample size?

- Just as before, we can select the sample size based on how large we want our margin or error to be

$$
\text { margin or error }=\Delta=z_{\alpha / 2} S E(\hat{p})=z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

- Issue: We haven't taken the sample, so we don't know \hat{p}
- Solution: Use $\hat{p}=0.5$ for most conservative sample size

$$
\Delta=z_{\alpha / 2} \sqrt{\frac{0.5 \cdot 0.5}{n}}=z_{\alpha / 2} \sqrt{\frac{0.5^{2}}{n}}
$$

To attain a particular margin of error Δ, we need a sample size

$$
n \geq\left(\frac{z_{\alpha / 2} \cdot 0.5}{\Delta}\right)^{2}
$$

Sample Size Calculation Cont.

Example 4: Political polls typically use 95% confidence and report margin of errors of $3 \%: \hat{p} \pm 0.03$.
What sample size do we need to for such a poll?

