Lecture 24

Confidence Intervals

Manju M. Johny

STAT 330 - Iowa State University

Confidence Intervals

- MLE gives us a "point estimate" of the unknown parameter.
- But $\hat{\theta}$ probably won't *exactly* equal θ due to sampling error. $\rightarrow P(\theta = \hat{\theta}) = 0$
- Create a confidence interval to give range of reasonable values for the unknown parameter θ .

Example 1: Polling

Today's poll shows 58% of people favor the new bill. The margin of error is $\pm 3\%.$

The confidence interval for the proportion of people that favor the bill is [0.55, 0.61].

Definition

A random interval [a, b] is a $(1 - \alpha)100\%$ confidence interval for the parameter θ if it contains θ with probability $(1 - \alpha)$

 $P(a \le \theta \le b) = 1 - \alpha$

- $(1-\alpha)$ is called the confidence level
- When you estimate an unknown parameter θ, it should be accompanied by a confidence interval
- Interpretation: We are [(1 α)%] confident that the [insert population parameter + context] is between [insert interval + units].

In this class, we will construct normal distribution based intervals.

Suppose we have an estimator $\hat{\theta}$ for unknown parameter $\theta.$

1. $\hat{\theta}$ is unbiased: $E(\hat{\theta}) = \theta$

2. $\hat{\theta}$ follows a normal distribution.

We can standardize $\hat{\theta}$ to get

$$Z = rac{\hat{ heta} - heta}{SE(\hat{ heta})} \sim N(0, 1)$$

where $SE(\hat{\theta}) = \sqrt{Var(\hat{\theta})} = \text{standard deviation of } \hat{\theta}$

Let $z_{\alpha/2}$ be the $1-\frac{\alpha}{2}$ quantile of the standard normal distribution.

$$P\left(-z_{\alpha/2} \leq \frac{\hat{ heta} - heta}{SE(\hat{ heta})} \leq z_{\alpha/2}
ight) = 1 - lpha$$

Isolating θ in the middle, we get

$$P\left(\hat{\theta} - z_{\alpha/2}SE(\hat{\theta}) \le \theta \le \hat{\theta} + z_{\alpha/2}SE(\hat{\theta})\right) = 1 - \alpha$$

Thus, a $(1-\alpha)100\%$ confidence interval for θ is

$$\hat{\theta} \pm z_{\alpha/2} SE(\hat{\theta})$$

Common choices for α are 0.01, 0.05, and 0.1

$(1 - \alpha)100\%$	80	90	95	98	99
$z_{\alpha/2}$	1.282	1.645	1.96	2.326	2.576

We will make confidence intervals for four cases:

- 1. μ (population mean)
- 2. *p* (population proportion)
- 3. $\mu_1 \mu_2$ (difference in population means)
- 4. $p_1 p_2$ (difference in population proportions)

Confidence intervals for all 4 of the above cases can be constructed using normal distribution based inference.

Follow the same general procedure to construct these intervals.

Confidence Interval for Mean

Confidence Interval for μ

Confidence interval for the population mean

$$X_1,\ldots,X_n\stackrel{iid}{\sim} f_X(x)$$
 with $E(X_i)=\mu$ and $Var(X_i)=\sigma$

First, we estimate μ using the *statistic* \bar{X} . From CLT, we know

•
$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

• $SE(\bar{X}) = \sqrt{Var(\bar{X})} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$

A (1-lpha)100% confidence interval for μ is

$$\bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

In most cases, the population standard deviation σ will be unknown. Replace σ with the sample standard deviation *s*.

$$\bar{X} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$$

If we want a 95% confidence interval, then

$$\begin{aligned} 1-\alpha &= 0.95\\ \rightarrow \alpha &= 0.05\\ \rightarrow \alpha/2 &= 0.025 \end{aligned}$$

 $z_{\alpha/2} = z_{0.025}$ is the 0.975th quantile of the N(0, 1) distribution. \rightarrow Using the z - table, we get $z_{0.025} = 1.96$

The 95% confidence interval for μ is

$$ar{X} \pm 1.96 rac{\sigma}{\sqrt{n}}$$
 when σ is known
 $ar{X} \pm 1.96 rac{s}{\sqrt{n}}$ when σ is unknown

Example

Example 2: A random sample of 50 batteries were taken for a particular brand. For the sample, the mean lifetime is 72.5 hours and variance is 19.3 hours². Find a 95% confidence interval for the true mean lifetime of batteries from that particular brand.

How to decide sample size?

- Can choose the sample size *n* to obtain a desired level of confidence & width for our confidence interval.
- Margin or error (Δ) is half the width of the confidence interval margin of error = $\Delta = z_{\alpha/2}SE(\bar{X}) = z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$
- The bigger the sample size, the smaller the standard error of the estimator, and smaller the size of our interval

To attain a particular margin of error Δ , we need a sample size

$$n \ge \left(\frac{z_{\alpha/2}\sigma}{\Delta}\right)^2$$

Confidence Interval for Proportion

Confidence interval for the population proportion

- In this scenario, we want to estimate the proportion of population belonging to a particular category.
- Any individual in the population either belongs to the category of interest ("1"), or they don't ("0").
- Thus, we can think of each random variable X as a Bernoulli distribution with unknown parameter *p*
- We ultimately want to estimate and find a confidence interval for *p*.

Confidence Interval for *p* **Cont.**

$$X_1, \ldots, X_n \stackrel{iid}{\sim} Bern(p)$$

First, estimate p using the statistic $\hat{p} = \frac{\sum X_i}{n}$ = sample proportion.

•
$$E(\hat{p}) = E(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n}E(\sum_{i=1}^{n} X_i) = \frac{1}{n}np = p \text{ (unbiased)}$$

• $Var(\hat{p}) = Var(\frac{\sum X_i}{n}) = \frac{1}{n^2}Var(\sum X_i) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$
 $\rightarrow SE(\hat{p}) = \sqrt{Var(\hat{p})} = \sqrt{\frac{p(1-p)}{n}}$

Since \hat{p} is the mean of the Bernoulli X's, CLT for means applies

$$\hat{p} \sim N(p, \frac{p(1-p)}{n})$$

Thus a $(1 - \alpha)100\%$ confidence interval for p is

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Example 3: In a random sample of 1000 U.S. adults, 38.8% stated they believed in the existence of ghosts. Find a 90% confidence interval for the population proportion of all U.S. adults who believe in the existence of ghosts.

How to decide sample size?

• Just as before, we can select the sample size based on how large we want our margin or error to be $\sqrt{\hat{a}(1-\hat{a})}$

margin or error $= \Delta = z_{\alpha/2} SE(\hat{p}) = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

- Issue: We haven't taken the sample, so we don't know \hat{p}
- Solution: Use $\hat{p} = 0.5$ for most conservative sample size

$$\Delta = z_{\alpha/2} \sqrt{\frac{0.5 \cdot 0.5}{n}} = z_{\alpha/2} \sqrt{\frac{0.5^2}{n}}$$

To attain a particular margin of error Δ , we need a sample size

$$n \geq \left(\frac{z_{\alpha/2} \cdot 0.5}{\Delta}\right)^2$$

Example 4: Political polls typically use 95% confidence and report margin of errors of 3%: $\hat{p} \pm 0.03$. What sample size do we need to for such a poll?