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Hypothesis Testing
Definition: ‘
A statistical hypothesis is a statement about a parameter 6 j

There are 2 competing hypotheses in a testing problem:

e Null Hypothesis (Hp): the default/pre-data view about the
parameter. (What w¢ alveudy bellewe — newer ?w\w*‘/\ﬁ)

e Alternative Hypothesis (Ha): usually what you want your
data/study to show. (whut tgou'w hyng o proue )

Note: Hp and Hp have to be disjoint. There can not be any
outcomes in common between the null and alternative hypotheses.
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Motivating Example

Example 1: | have a coin and I'm interested in the probability of
flipping a “head”. | flip a coin 100 times and record the number of
heads obtained.

X = # of heads

X ~ Bin(n =100, p)
where p = P("heads" ) is unknown
By default, we assume coin is fair p = 0.5 (null hypothesis).
Alternative hypothesis should contradict the null hypothesis.

Hypotheses:
e Hy: p=0.5(coin is fair)
® Hp: p# 0.5 (coin is unfair)
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Motivating Example Continued

Data: Out of 100 flips, | get 71 heads. p = 0.71

Idea of Hypothesis Testing:

e Assume Hp (our default belief) is true until our data tells us
otherwise.

e Ask ourselves “what is the probability of getting 71 heads if
the null hypothesis is true (coin is fair)?"
— probability = 0.000032 (called the “p — value™)

e There is a 0.000032 probability that we observed our data if

the null hypothesis that the coin is fair is true.

— Now we have evidence against the null hypothesis (that
coin is fair), and in favor of the alternative hypothesis (that
coin is unfair).
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General Hypothesis Testing
Procedure

Hypothesis Tests

We will look at 4 different hypothesis testing scenarios.
Their null hypotheses are given below: " 0
. Losh wleey AuL population parameter
o Hy:p=+# z a Q(t\A‘&\ ir somy valve L‘t\?) .

: Zo:p__# /R D> test whetuer e Aifevence N pa,mww&ets
® /o I M1 — M2 @% eor 2 GJWUPS S eq\/a.\-lfosome
SSOER = RS yalue c#). Taie valve () s

“3‘6(*\\9 alwost  always 6.

The above all follow the same general hypothesis testing procedure.
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Testing Procedure

General Hypothesis Testing Procedure Note : € 1s gust

1. Determine the Null and Alternative Hypotheses: stand - symbol

a_ for  parawmeter

aAways = > Hy:0=+# s ¥ g\(\ou\d 6 caube /S M

. ; & sawd v
sign O\.epem\ia bta: o § # ol and Hea M- M2
oh PbelQW\ # w o P -7

2. Gather data and calculate a test statistic under the

assumption that Hp is true. Test statistic has general form:

_o—#
 SE(d)

Calculate the p-value. Use p—value to determine whether you
have enough evidence to reject the null hypothesis.

e small p—value — Hj unlikely -+ Reject H
e large p—value — No evidence against Hy, = Do not Ve]ed- to

Fai] %o veledt 6/11
Ho

Calculating p-values




Calculating p—value

Definition: p—value
The p—value is the probability of observing your test statistic or
more extreme if the null hypothesis (Hp) is true.

“more extreme' can be bigger, smaller or both depending on the

the sign in the alternative hypothesis (Ha)

e Small p — value indicates a small probability of seeing your
data if Hp is true. The data is evidence against Hyp (Reject Hp)

e Large p — value indicates a large probability of seeing your
data if Hp is true. No evidence against Hy (Do Not Reject Hp)

e P — value is often wrongly interpreted as the probability of
the null hypothesis. (Don't make this mistake)
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Calculating the p — value

e By central limit theorem, the estimator follows a normal
distribution. Standardizing the estimator gives us the test
statistic Z, which follows N(0, 1) distribution

e Obtain p — value from the z—table as left-hand area,

right-hand area or both (depending on sign in Hp)

Left-sided Hypothesis Test

Hg:0 =4
Hp:0€ #
_ -#
<= SE@) ( -
2
p-vale = P(2 £ 2) .
T s\,uﬁs’“c
yest 2 g/11
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Calculating p—value Cont.

Right-sided Hypothesis Test p-valve =P(2 72)

Ho : 0 =# (@ignt-hand
Hpy @ O # avel )
_ O—# J

~valve=P(12}| >12|
2-sided Hypothesis Test p-val ( )

Ho: 0 = # =p(z2¢-121)
Ha: 0 +P(2 7 HE)
A -
= Bt EE:—
SE(9) s 21 = 2P(2¢-@)
Easiest way * Mdre Your 2Z =2P(2> H%\)
A viegatine va\u_e) and fond (et ong %\\cée &
e \eft-hand  drea d%t/dlolle it
ven  dmble It .

Types of Errors

In the testing framework, it is possible to make errors that are
Dedsion

No)( inherent to the testing procedure (not calculation mistakes). s
\Z
W\ w\ Types of errors Rgyeck to Doh’%W@’eéf
W
€ e Type | Error (wrongly reject Hp) tto Trie |TYR T | (vo y
0
— P(Type | error) = « f | emov | ®Y
e Type Il Error (wrongly fail to reject Hp) S| H#o False | No Type L
I~ Exroy eytuy

— P(Type Il error) = 3
Note:

e « (significance level) can be viewed as a cut-off for how small
the p—value needs to be to reject Hy. Reject Hp if
p — value < a. (o set before conducting the test).

e In this class, we use a strength of evidence argument without

a “cut-off’ for p — value.
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Hypothesis Testing Examples

Tax Fraud Example

Example: Tax Fraud
DQ;U\\& Historically, IRS taxpayer compliance audits have revealed that
Leliek > about 5% of individuals do things on their tax returns that invite

criminal prosecution.

A sample of n = 1000 tax returns produces p = 0.061 as an
estimate of the fraction of fraudulent returns.

Does this provide a clear signal of change in the tax payer
S————

behavior? S no speci fc divechion
@2 Can \oe qrefecor ks

1. State the Hypotheses
Ve ! n Hp

Ha s P # 0.0 valug
(newer Wse
e )
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Tax Fraud Example

2. The test statistic will be obtained from
p—#  p—0.05

#(1—#)  /0.05(0.95)

Under the null hypothesis, Z follows a N(0,1) distribution.

7 =

daka Plugging in our data values, we get the test statistic

n _
5 <0.061 ,_ 0061005
0.05(0.95)
N =1000 1000
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Tax Fraud Cont.

3. Since we have a “#" in the Hy, the p—value is obtained from
both the left-hand and right-hand area of the normal curve.

p — value = P(|Z| > 1.59)
= P(Z < —1.59) + P(Z > 1.59) ¢.55)
=2.P(Z < -1.59) '

=459
= 2% 0.0559

—0.1118 72 N @Y

> o P= 6.05 This is not a very small p—value. We therefore only have very
X Hps P # v-0S weak evidence against Hy. Thus, we do not reject the null
"7 hypothesis in favor of the alternative hypothesis.

There is not much evidence of change in tax payer behavior.
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Disk Drive Example

Example: Disk Drive
n1 = 30 and ny = 40 disk drives of 2 different designs were tested

under conditions of " accelerated” stress and times to failure

recorded: Gwoup 1 Guoup 2
Standard Design New Design
hi. = 30 ny =40

X1 = 1205 hr Xo = 1400 hr
s1 = 1000 hr s =900 hr

Does the new design have a larger mean time to failure under
"accelerated” stress? In other word, is the new design better?

1. State the Hypotheses
HD:MI:MZ = MI”M‘?, =0
Fr o m, € M > p-Pe <O
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Disk Drive Cont.

2. The test statistic will be obtained from
(X1 —X2) —0

s2 s2

Vi+4

Under the null hypothesis, Z follows a N(0,1) distribution.

Z =

Plugging in our data values, we get the test statistic

_ (1205 — 1400) — 0
B /10002 Js 9002
Vi

ob S(’,V\)""d
*eto\’ﬂ sne

= —0.84
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Disk Drive Cont.

3. Since we have a “<" in the Hy, the p—value is obtained from
the left-hand area of the normal curve.

p — value = P(Z < —0.84)
=02005 o 207,

> Ho M' - M 2 This is not a small p—value. We therefore only have very
weak evidence against Hy. Thus, we do not reject the null

L Hea: < MQ hypothesis in favor of the alternative hypothesis.

There is not significant evidence that the new design is better.
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Queuing System Example

Example: Queuing System
Suppose we have 2 queuing systems A and B. We'd like to know

whether system A has a higher probability of having an available

server in the long run than system B. The simulation data for the 2

servers is shown below: (rovp 4 Cprovip 2 X SRW‘O\‘Q
System A System B P - pio pn0N
niy = 500 runs ny, = 1000 runs og w SQW‘QV
A 303 - (. A 551 AL
Pr= 550" 0-bbb P2 = 500 - 0.55! O\V‘:\\\ i
\

where p is the proportion runs with available servers at t = 2000.
1. State the Hypotheses
H’DIPI:?.Z_ - Pr—P=2 =0
Ha = P, > P2 = Pr=%= 20
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Queuing System Cont

2. The test statistic will be obtained from

(Pr——>F2)=0
\/ﬁpool(l - ﬁpool) nll i 771;
Under the null hypothesis, Z follows a N(0,1) distribution.

L =

Next, calculate ppoo to plug into the denominator of the test
statistic.
. _ nip1 + na2po _ 303 -1 551
Ppool = T ¥ m 500+ 1000
Plugging in our data values, we get the test statistic

L (0.606 — 0.551) o

1/0.569(1 — 0.569)4/ zt= R 1000

= 0.569

ob&eM hs’“ &

Queuing System Cont

*egrwu
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X o Pi=P2
Z tHe P 2P2

3. Since we have a “>" in the Hya, the p—value is obtained from

the right-hand area of the normal curve.

p — value = P(Z > 2.03)
=1-0.9788
=0.0212 % 2%

This is a small p—value. We therefore have strong evidence
against Hp. Thus, we reject the null hypothesis in favor of the
alternative hypothesis.

There is strong evidence that system A has a higher
probability of having an available server than system B.
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Hypothesis Testing Summary

Null Hypothesis Test-Statistic Reference Dist.
Ho:p=# Z:f/j_,f Z ~ N(0,1)
N _ _p# -
Hy: p= Z= = Z ~ N(0,1)
] Ho:pn—po =# Z=15%0# Z ~ N(0,1)
'fvé“““ﬂ L
\
0 Ho:pr—pp=# Z-= (By—Po)— Z ~ N(0,1
¢ pl p2 # \/ﬁpool(l—ﬁpool)\/%"*_% ( )
mp1+mpr

where Bpoo) = 12
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