Lecture 26

Hypothesis Testing

Manju M. Johny

STAT 330 - Iowa State University

1/11

Hypothesis Testing

Definition:

A statistical *hypothesis* is a statement about a parameter θ

There are 2 competing hypotheses in a testing problem:

- Null Hypothesis (Ho): the default/pre-data view about the parameter. (What we already believe never proverties)
- Alternative Hypothesis (HA): usually what you want your data/study to show. (what you're trying to prove)

Note: H_0 and H_A have to be disjoint. There can not be any outcomes in common between the null and alternative hypotheses.

Motivating Example

<u>Example 1:</u> I have a coin and I'm interested in the probability of flipping a "head". I flip a coin 100 times and record the number of heads obtained.

$$X = \#$$
 of heads
 $X \sim Bin(n = 100, p)$

where p = P("heads") is unknown

By default, we assume coin is fair p = 0.5 (null hypothesis).

Alternative hypothesis should contradict the null hypothesis.

Hypotheses:

- $H_0: p = 0.5$ (coin is fair)
- $H_A: p \neq 0.5$ (coin is unfair)

3/11

Motivating Example Continued

Data: Out of 100 flips, I get 71 heads. $\hat{p} = 0.71$

Idea of Hypothesis Testing:

- Assume H_0 (our default belief) is true until our *data* tells us otherwise.
- Ask ourselves "what is the probability of getting 71 heads if the null hypothesis is true (coin is fair)?"
 - \rightarrow probability = 0.000032 (called the "p value")
- There is a 0.000032 probability that we observed our data if the null hypothesis that the coin is fair is true.
 - → Now we have evidence against the null hypothesis (that coin is fair), and in favor of the alternative hypothesis (that coin is unfair).

General Hypothesis Testing Procedure

Hypothesis Tests

We will look at 4 different hypothesis testing scenarios.

Their null hypotheses are given below:

Their null hypotheses are given below:

•
$$H_0: \mu = \#$$
• $H_0: p = \#$
• $H_0: \mu_1 - \mu_2 =$

The above all follow the same general hypothesis testing procedure.

Testing Procedure

General Hypothesis Testing Procedure

1. Determine the Null and Alternative Hypotheses:

Note: O is just
stand in symbol
for parameter
O can be M
P
MI-MZ
PI-PZ

2. Gather data and calculate a *test statistic* under the assumption that H_0 is true. Test statistic has general form:

$$Z = \frac{\hat{\theta} - \#}{SE(\hat{\theta})}$$

- 3. Calculate the p-value. Use p-value to determine whether you have enough evidence to reject the null hypothesis.
 - small p-value $\rightarrow H_0$ unlikely \rightarrow Reject H_0
 - large p-value \rightarrow No evidence against $H_0 \rightarrow$ Do not reject the Fail to reject 6/11

Calculating p-values

Calculating p-value

Definition: *p*-value

The p-value is the probability of observing your test statistic or more extreme if the null hypothesis (H_0) is true.

"more extreme" can be bigger, smaller or both depending on the the sign in the alternative hypothesis (H_A)

- Small p-value indicates a small probability of seeing your data if H_0 is true. The data is evidence against H_0 (Reject H_0)
- Large p value indicates a large probability of seeing your data if H_0 is true. No evidence against H_0 (Do Not Reject H_0)
- P-value is often *wrongly* interpreted as the probability of the null hypothesis. (Don't make this mistake)

7/11

Calculating the *p* – *value*

- By central limit theorem, the estimator follows a normal distribution. Standardizing the estimator gives us the test statistic Z, which follows N(0,1) distribution
- Obtain p value from the z-table as left-hand area, right-hand area or both (depending on sign in H_A)

Left-sided Hypothesis Test

$$H_0: \theta = \#$$

$$H_A: \theta < \#$$

$$Z = \frac{\hat{\theta} - \#}{SE(\hat{\theta})}$$

$$P$$
-value = $P(Z \le Z)$
 $test statistic$

value

Calculating p-value Cont.

Right-sided Hypothesis Test

$$H_0: \theta = \#$$

 $H_A: \theta \gg \#$

$$Z = \frac{\hat{\theta} - \#}{SE(\hat{\theta})}$$

2-sided Hypothesis Test

$$H_0: \theta = \#$$

$$H_A:\theta\neq\#$$

$$Z = \frac{\hat{\theta} - \#}{SE(\hat{\theta})}$$

Easiest way: make your 2 a negative value, and find the left-hand area, then double it.

Types of Errors

In the testing framework, it is possible to make errors that are inherent to the testing procedure (not calculation mistakes).

Decision

Not

Types of errors

- Type I Error (wrongly reject H_0)
 - \rightarrow P(Type I error) = α
- Type II Error (wrongly fail to reject H_0)
 - \rightarrow P(Type II error) = β

			Reject Ho	Don't Rejted
ヹ	Ho	True	Type I error	EXLOX (No
Trut	Ho	False	No Error	Type II errur

Note:

- α (significance level) can be viewed as a cut-off for how small the p-value needs to be to reject H_0 . Reject H_0 if $p value < \alpha$. (α set before conducting the test).
- In this class, we use a strength of evidence argument without a "cut-off" for p-value.

Hypothesis Testing Examples

Tax Fraud Example

Example: Tax Fraud

Default belief >>

Historically, IRS taxpayer compliance audits have revealed that about 5% of individuals do things on their tax returns that invite criminal prosecution.

A sample of n = 1000 tax returns produces $\hat{p} = 0.061$ as an estimate of the fraction of fraudulent returns.

Does this provide a clear signal of change in the tax payer no specific direction. behavior?

1. State the Hypotheses

Ho:
$$P = 0.05$$
 Same
Ha: $P \neq 0.05$ Same
(never use
 \hat{P})

use "+" in HA

Tax Fraud Example

2. The test statistic will be obtained from

$$Z = \frac{\hat{p} - \#}{\sqrt{\frac{\#(1-\#)}{n}}} = \frac{\hat{p} - 0.05}{\sqrt{\frac{0.05(0.95)}{n}}}$$

Under the null hypothesis, Z follows a N(0,1) distribution.

Auta Plugging in our data values, we get the test statistic

$$\hat{p} = 0.061$$
 $z = \frac{0.061 - 0.05}{\sqrt{\frac{0.05(0.95)}{1000}}} = 1.59$

2/9

Tax Fraud Cont.

3. Since we have a " \neq " in the H_A , the p-value is obtained from both the left-hand and right-hand area of the normal curve.

$$p - value = P(|Z| \ge 1.59)$$

= $P(Z < -1.59) + P(Z > 1.59)$ 0.0550
= $2 \cdot P(Z < -1.59)$
= $2 * 0.0559$
= 0.1118 % | 1.59 %

This is not a very small p-value. We therefore only have very weak evidence against H_0 . Thus, we do not reject the null hypothesis in favor of the alternative hypothesis.

There is not much evidence of change in tax payer behavior.

Disk Drive Example

Example: Disk Drive

 $n_1 = 30$ and $n_2 = 40$ disk drives of 2 different designs were tested under conditions of "accelerated" stress and times to failure

recorded:

(איטאף ב Standard Design	New Design
$n_1 = 30$	$n_2 = 40$
$ar{x}_1=1205\;hr$	$ar{x}_2=1400~\text{hr}$
$\mathit{s}_{1}=1000\;hr$	$\mathit{s}_2 = 900 hr$

Does the <u>new design</u> have a <u>larger</u> mean time to failure under "accelerated" stress? In other word, is the new design better?

1. State the Hypotheses

Ho:
$$M_1 = M_2$$
 \Rightarrow $M_1 - M_2 = 0$
HA: $M_1 < M_2$ \Rightarrow $M_1 - M_2 < 0$

4/9

Disk Drive Cont.

2. The test statistic will be obtained from

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Under the null hypothesis, Z follows a N(0,1) distribution.

Plugging in our data values, we get the test statistic

$$z = \frac{(1205 - 1400) - 0}{\sqrt{\frac{1000^2}{30} + \frac{900^2}{40}}} = -0.84$$
observed
test
statistic

Disk Drive Cont.

3. Since we have a "<" in the H_A , the p—value is obtained from the left-hand area of the normal curve.

$$p - value = P(Z < -0.84)$$
$$= 0.2005 \qquad 20 \, ^{0} Jo$$

This is not a small p-value. We therefore only have very weak evidence against H_0 . Thus, we <u>do not</u> reject the null hypothesis in favor of the alternative hypothesis.

There is not significant evidence that the new design is better.

6/9

Queuing System Example

Example: Queuing System

Suppose we have 2 queuing systems A and B. We'd like to know whether system A has a higher probability of having an available server in the long run than system B. The simulation data for the 2

servers is shown below: Group 1 Group 2
$$\frac{\text{System A}}{\text{System B}} = \frac{\text{Sample}}{\text{proportion}}$$

$$\frac{n_1 = 500 \text{ runs}}{\hat{p}_1 = \frac{303}{500} = 0.606} \hat{p}_2 = \frac{551}{1000} = 0.551$$

$$\hat{p}_2 = \frac{551}{1000} = 0.551$$

$$\hat{p}_3 = \frac{303}{500} = 0.606$$

$$\hat{p}_4 = \frac{551}{1000} = 0.551$$

where \hat{p} is the proportion runs with available servers at t=2000.

1. State the Hypotheses

Ho:
$$P_1 = P_2$$
 \Rightarrow $P_1 - P_2 = 0$
HA: $P_1 > P_2$ \Rightarrow $P_1 - P_2 > 0$

Queuing System Cont.

2. The test statistic will be obtained from

$$Z = \frac{(\hat{\rho}_1 - \hat{\rho}_2) - 0}{\sqrt{\hat{\rho}_{pool}(1 - \hat{\rho}_{pool})}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Under the null hypothesis, Z follows a N(0,1) distribution.

Next, calculate \hat{p}_{pool} to plug into the denominator of the test statistic.

$$\hat{p}_{pool} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2} = \frac{303 + 551}{500 + 1000} = 0.569$$

Plugging in our data values, we get the test statistic

$$\hat{\rho}_{pool} = \frac{m_1 p_1 + m_2 p_2}{n_1 + n_2} = \frac{303 + 351}{500 + 1000} = 0.569$$
In our data values, we get the test statistic
$$z = \frac{(0.606 - 0.551) - 0}{\sqrt{0.569(1 - 0.569)} \sqrt{\frac{1}{500} + \frac{1}{1000}}} = 2.03$$
Observed

observed

value

8/9

Queuing System Cont.

3. Since we have a ">" in the H_A , the p-value is obtained from the right-hand area of the normal curve.

$$p - value = P(Z > 2.03)$$

= 1 - 0.9788
= 0.0212 $\approx 2\%$

This is a small p-value. We therefore have strong evidence against H_0 . Thus, we reject the null hypothesis in favor of the alternative hypothesis.

There is strong evidence that system A has a higher probability of having an available server than system B.

Hypothesis Testing Summary

	Null Hypothesis	Test-Statistic	Reference Dist.
	$H_0: \mu = \#$	$Z = rac{ar{X} - \#}{s / \sqrt{n}}$	$Z \sim N(0,1)$
	$H_0: p = \#$	$Z = \frac{\hat{p} - \#}{\sqrt{\frac{\#(1 - \#)}{n}}}$	$Z \sim N(0,1)$
"#" chally	$H_0: \mu_1 - \mu_2 = \#$	$Z = \frac{(\bar{X}_1 - \bar{X}_2) - \#}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$Z \sim N(0,1)$
15 0 2	$H_0: p_1-p_2=\#$	$Z = rac{(ar{X}_1 - ar{X}_2) - \#}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$ $Z = rac{(\hat{ ho}_1 - \hat{ ho}_2) - \#}{\sqrt{\hat{ ho}_{pool}(1 - \hat{ ho}_{pool})} \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$ where $\hat{ ho}_{pool} = rac{n_1\hat{ ho}_1 + n_2\hat{ ho}_2}{n_1 + n_2}$	$Z \sim N(0,1)$
	*	. 11 + 112	