Lecture 3
 Conditional Probability \& Independence

Manju M. Johny
STAT 330-Iowa State University

Contingency Table

Contingency Table

Definition

A contingency table gives the distribution of 2 variables.

Example 1: Suppose in a small college of 1000 students, 650 students own Iphones, 400 students own MacBooks, and 300 students own both.
Define events: $I=$ "owns Iphone", and $M=$ "owns MacBook".

Contingency Table

Computer Phone	M	M	Total
1	300	350	650
$\overline{1}$	100	250	350
Total	400	600	1000

Marginal Probability

Marginal Probability

Definition

The marginal probability is the probability of a variable. It can be obtained from the margins of contingency table.

What is the probability of owning a Mac? (ie marginal probability of owning a Mac)
$P(M)=\frac{400}{1000}=0.40$

Conditional Probability

Conditional Probability

Does knowing someone owns an Iphone change the probability they own a Mac?

Informally, conditional probability is updating the probability of an event given information about another event.

If we know that someone owns an Iphone, then we can narrow our sample space to just the "owns Iphone" case (highlighted blue row) and ignore the rest!

Conditional Probability Cont.

What is the probability of owning a Mac given they own an Iphone?

$P(M \mid I)=\frac{300}{650}=0.46$

Conditional Probability Cont.

Definition

The conditional probability of event A given event B is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

provided $P(B) \neq 0$.
It can be obtained from the rows/columns of contingency table.

Back to Example 1 ...
What is the probability of owning a Mac given they own an Iphone?

$$
P(M \mid I)=\frac{P(I \cap M)}{P(I)}=\frac{0.3}{0.65}=0.46
$$

Consequences of Conditional Probability

The definition of conditional probability gives useful results:
1.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \rightarrow P(A \cap B)=P(B) P(A \mid B)
$$

2.

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)} \rightarrow P(A \cap B)=P(A) P(B \mid A)
$$

This gives us two additional ways to calculate probability of intersections. Putting it together ...

$$
P(A \cap B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Probability Calculations

Probability Calculations

A contingency table can also be written with probabilities instead of counts. This is called a probability table.

Inner cells give "joint probabilities" \rightarrow probability of intersections

- $P(A \cap B), P(\bar{A} \cap B)$, etc

Margins give "marginal probabilities" \rightarrow probability of variables

- $P(A), P(B), P(\bar{A})$, etc

	Computer	M	\bar{M}	Total
Phone				
	0.30	0.35	0.65	
		0.10	0.25	0.35
Total	0.40	0.60	1	

Probability Calculations Cont.

	Computer	M	\bar{M}
Phone		Total	
l	0.30	0.35	0.65
\bar{l}	0.10	0.25	0.35
Total	0.40	0.60	1

$P(\bar{I})=$
$P(M)=$
$P(\bar{I} \cap M)=$
$P(M \mid \bar{I})=$
$P(\bar{I} \mid M)=$

Independence

Independence of Events

In Example 1, knowing an event occurred changed the probability of another event occurring.

However, sometimes knowing an event occurs doesn't change the probability of the other event.
In this case, we say the events are independent.

Definition

Events A and B are independent if ...

1. $P(A \cap B)=P(A) P(B)$
or equivalently
2. $P(A \mid B)=P(A)$ if $P(B) \neq 0$

Independence of Events Cont.

Example 2: Check if events are independent

Is owning an Iphone and owning MacBook independent?
Recall that $P(I)=0.65, P(M)=0.4, P(I \cap M)=0.35$

Independence of Events Cont.

Example 3: Using independence to simplify calculations If A, B independent $\rightarrow P(A \cap B)=P(B) P(A \mid B)=P(B) P(A)$

Roll a die 4 times. Assuming that rolls are independent, what is the probability of obtaining at least one '6' ?
P (at least 1 ' 6 ') $=1-P$ (No ' 6 's)
$=1-P($ no ' 6 ' on roll $1 \cap$ no ' 6 ' on roll $2 \cap \cdots \cap$ no ' 6 ' on roll 4)
$=$

Independent vs. Disjoint

Independent $=$ Disjoint!!!

Completely different concepts!

Independent:

$P(A \cap B)=P(A) P(B)$

Disjoint:

$P(A \cap B)=P(\emptyset)=0$

System Reliability

Application: System Reliability

Parallel: A parallel system consists of k components $\left(c_{1}, \ldots, c_{k}\right)$ arranged such that the system works if and only if at least one of the k components functions properly.

Series: A series system consists of k components $\left(c_{1}, \ldots, c_{k}\right)$ arranged such that the system works if and only if ALL components function properly.

Reliability: Reliability of a system is the probability that the system works.

Reliability of Parallel System

Example 4:

Let c_{1}, \ldots, c_{k} denote the k components in a parallel system.
Assume the k components operate independently, and $P\left(c_{j}\right.$ works $)=p_{j}$. What is the reliability of the system?

$$
\begin{aligned}
P(\text { system works }) & =P(\text { at least one component works }) \\
& =1-P(\text { all components fail }) \\
& =1-P\left(c_{1} \text { fails } \cap c_{2} \text { fails } \cap \cdots \cap c_{k} \text { fails }\right) \\
& =1-\prod_{j=1}^{k} P\left(c_{j} \text { fails }\right) \\
& =1-\prod_{j=1}^{k}\left(1-p_{j}\right)
\end{aligned}
$$

Reliability of Series System

Example 5:

Let c_{1}, \ldots, c_{k} denote the k components in a series system.
Assume the k components operate independently, and $P\left(c_{j}\right.$ works $)=p_{j}$. What is the reliability of the system?

$$
\begin{aligned}
P(\text { system works }) & =P(\text { all components work }) \\
& =P\left(c_{1} \text { works } \cap c_{2} \text { works } \cap \cdots \cap c_{k} \text { works }\right) \\
& =\prod_{j=1}^{k} P\left(c_{j} \text { works }\right) \\
& =\prod_{j=1}^{k} p_{j}
\end{aligned}
$$

Reliability Example

Example 6: Suppose a base is guarded by 3 radars $\left(R_{1}, R_{2}, R_{3}\right)$, and the radars are independent of each other. The detection probability are...
$P\left(R_{1}\right.$ detects $)=0.95$
$P\left(R_{2}\right.$ detects $)=0.98$
$P\left(R_{3}\right.$ detects $)=0.99$
Does a system in parallel or series have higher reliability for this scenario?

Reliability Example

Reliability Example

