Lecture 3

Conditional Probability & Independence

Manju M. Johny

STAT 330 - Iowa State University

Contingency Table

Contingency Table

Definition

A contingency table gives the distribution of 2 variables.

Example 1: Suppose in a small college of 1000 students, 650 students own Iphones, 400 students own MacBooks, and 300 students own both.

Define events: I = "owns Iphone", and M = "owns MacBook".

Computer Phone	М	M	Total
1	300	?	650
Ī	?	?	?
Total	400	?	1000

Marginal Probability

Marginal Probability

Definition

The *marginal probability* is the probability of a variable. It can be obtained from the *margins* of contingency table.

Computer Phone	М	\overline{M}	Total
1	300	350	650
7	100	250	350
Total	400	600	1000

What is the probability of owning a Mac? (ie marginal probability of owning a Mac) $P(M) = \frac{400}{1000} = 0.40$

Conditional Probability

Conditional Probability

Does knowing someone owns an Iphone change the probability they own a Mac?

Informally, conditional probability is updating the probability of an event given information about another event.

If we *know* that someone owns an Iphone, then we can narrow our sample space to just the "owns Iphone" case (highlighted blue row) and ignore the rest!

Computer Phone	М	\overline{M}	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

What is the probability of owning a Mac given they own an Iphone?

Computer Phone	М	\overline{M}	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

 $P(M|I) = \frac{300}{650} = 0.46$

Definition

The conditional probability of event A given event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided $P(B) \neq 0$.

It can be obtained from the *rows/columns* of contingency table.

Back to Example 1 ...

What is the probability of owning a Mac given they own an Iphone?

$$P(M|I) = \frac{P(I \cap M)}{P(I)} = \frac{0.3}{0.65} = 0.46$$

The definition of conditional probability gives useful results:

 $P(A|B) = rac{P(A \cap B)}{P(B)} \rightarrow P(A \cap B) = P(B)P(A|B)$

1.

$$P(B|A) = rac{P(A \cap B)}{P(A)}
ightarrow P(A \cap B) = P(A)P(B|A)$$

This gives us two additional ways to calculate probability of intersections. Putting it together ...

 $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$

Probability Calculations

Probability Calculations

A contingency table can also be written with probabilities instead of counts. This is called a *probability table*.

Inner cells give "joint probabilities" \rightarrow probability of intersections

• $P(A \cap B), P(\overline{A} \cap B)$, etc

Margins give "marginal probabilities" ightarrow probability of variables

• $P(A), P(B), P(\overline{A}),$ etc

Computer Phone	М	M	Total
Ι	0.30	0.35	0.65
<u> </u>	0.10	0.25	0.35
Total	0.40	0.60	1

Probability Calculations Cont.

Computer Phone	М	\overline{M}	Total
1	0.30	0.35	0.65
Ī	0.10	0.25	0.35
Total	0.40	0.60	1

 $P(\overline{I}) =$

P(M) =

 $P(\overline{I} \cap M) =$

 $P(M|\overline{I}) =$

 $P(\overline{I}|M) =$

Independence

In Example 1, knowing an event occurred changed the probability of another event occurring.

However, sometimes knowing an event occurs *doesn't change* the probability of the other event.

In this case, we say the events are *independent*.

Definition

Events A and B are *independent* if

1. $P(A \cap B) = P(A)P(B)$

or equivalently

2.
$$P(A|B) = P(A)$$
 if $P(B) \neq 0$

Example 2: Check if events are independent

Is owning an Iphone and owning MacBook independent? Recall that P(I) = 0.65, P(M) = 0.4, $P(I \cap M) = 0.35$ Example 3: Using independence to simplify calculations If A, B independent $\rightarrow P(A \cap B) = P(B)P(A|B) = P(B)P(A)$

Roll a die 4 times. Assuming that rolls are independent, what is the probability of obtaining at least one '6'?

P(at least 1 '6') = 1 - P(No '6's)= 1 - P(no '6' on roll 1∩no '6' on roll 2∩···∩no '6' on roll 4) =

Independent vs. Disjoint

Independent \neq *Disjoint*!!!

Completely different concepts!

 $P(A \cap B) = P(A)P(B)$

 $P(A \cap B) = P(\emptyset) = 0$

System Reliability

Parallel: A parallel system consists of k components (c_1, \ldots, c_k) arranged such that the system works if and only if at least one of the k components functions properly.

Series: A series system consists of k components (c_1, \ldots, c_k) arranged such that the system works if and only if ALL components function properly.

Reliability: Reliability of a system is the probability that the system works.

Example 4:

Let c_1, \ldots, c_k denote the k components in a *parallel* system. Assume the k components operate independently, and $P(c_j \text{ works }) = p_j$. What is the reliability of the system?

P(system works) = P(at least one component works)= 1 - P(all components fail) = 1 - P(c_1 fails \cap c_2 fails \cap \dots \cap c_k fails) = 1 - $\prod_{j=1}^{k} P(c_j \text{ fails})$ = 1 - $\prod_{i=1}^{k} (1 - p_i)$

Example 5:

Let c_1, \ldots, c_k denote the k components in a *series* system. Assume the k components operate independently, and $P(c_j \text{ works }) = p_j$. What is the reliability of the system?

P(system works) = P(all components work) $= P(c_1 \text{ works} \cap c_2 \text{ works} \cap \cdots \cap c_k \text{ works})$ $= \prod_{j=1}^k P(c_j \text{ works})$ $= \prod_{j=1}^k p_j$

Example 6: Suppose a base is guarded by 3 radars (R_1, R_2, R_3) , and the radars are independent of each other. The detection probability are ...

 $P(R_1 \text{ detects}) = 0.95$

 $P(R_2 \text{ detects}) = 0.98$

 $P(R_3 \text{ detects}) = 0.99$

Does a system in *parallel* or *series* have higher reliability for this scenario?

Reliability Example

Reliability Example