Lecture 3

Conditional Probability & Independence

Manju M. Johny

STAT 330 - Iowa State University

1/20

Contingency Table

Contingency Table

Definition

(Two way Table)

A contingency table gives the distribution of 2 variables.

"break down"

Example 1: Suppose in a small college of 1000 students, 650 students own Iphones, 400 students own MacBooks, and 300 students own both.

Define events: I = "owns Iphone", and M = "owns MacBook".

	, and ,,,	INM	:# 06 students that own
Computer	M	\overline{M}	Total
<u> </u> 	300	?	650 # who own iphoul
Total	400	?	1000 _ Total #
Į,	own mac		1000) _ Total # In sample 2/20 space \$2
# who	own mac		= 121

Contingency Table

- · Fill in rest of table
- · Inner cells add to margins
- · margin sides add to total.

Computer	М	M	Total
1	300	350	650
Ī	100	250	350
Total	400	600	1000

Marginal Probability

Marginal Probability

Definition

The *marginal probability* is the probability of a variable. It can be obtained from the *margins* of contingency table.

Phone	Computer	М	M	Total
	1	300	350	650
~	Ī	100	250	350
	Total	400	600	1000

What is the probability of owning a Mac? (ie marginal probability of owning a Mac) $P(M) = \frac{100}{1000} = 0.40$ $P(M) = \frac{100}{1000} = 0.40$

Conditional Probability

Conditional Probability

Does knowing someone owns an Iphone change the probability they own a Mac?

Informally, conditional probability is updating the probability of an event given information about another event.

If we *know* that someone owns an Iphone, then we can narrow our sample space to just the "owns Iphone" case (highlighted blue row) and ignore the rest!

Computer	М	M	Total
	300	350	650
	100	250×	3450
Total	400	600	1000

Conditional Probability Cont.

What is the probability of owning a Mac given they own an Iphone?

Computer		М	M	Total
	1	(300)	350	650
Ť		100	250	350
Т	otal	400	600	1000

$$P(M|I) = \frac{300}{650} = 0.46$$

6/20

Conditional Probability Cont.

Definition

The conditional probability of event A given event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided $P(B) \neq 0$.

It can be obtained from the *rows/columns* of contingency table.

Back to Example 1 ...

What is the probability of owning a Mac given they own an Iphone?

$$P(M|I) = \frac{P(I \cap M)}{P(I)} = \frac{0.3}{0.65} = 0.46$$

Consequences of Conditional Probability

The definition of conditional probability gives useful results:

1.

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow P(A \cap B) = P(B)P(A|B)$$

2.

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \rightarrow P(A \cap B) = P(A)P(B|A)$$

This gives us two additional ways to calculate probability of intersections. Putting it together . . .

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

8/20

Probability Calculations

Probability Calculations

A contingency table can also be written with probabilities instead of counts. This is called a *probability table*.

Inner cells give "joint probabilities" → probability of intersections

• $P(A \cap B), P(\overline{A} \cap B)$, etc

Margins give "marginal probabilities" \rightarrow probability of variables

• F	$P(A), P(B), P(\overline{A}), \text{ etc}$		P(IA	$M) = \frac{1}{1}$	$\frac{[\Lambda M]}{SL} = \frac{300}{1000} = 0.3$
	Computer	M	M	Total	$P(I) = \frac{ I }{ \Omega } = 0.65$
	<u> </u> 	0.30	0.35 0.25	0.65	
	Total	0.40	0.60		9 / 20
			P(1)	= 121	$=\frac{1000}{1000}=1$

Probability Calculations Cont.

Computer	М	\overline{M}	Total
<u> </u>	0.30	0.35	0.65
	0.10	0.25	0.35
Total	0.40	0.60	1

$$P(\overline{I}) = 0.35$$

$$P(M) = 0.40$$

$$P(\overline{I} \cap M) = 0.10$$

$$P(M|\overline{I}) = \frac{P(M \cap \overline{I})}{P(\overline{I})} = \frac{0.10}{0.35} = 0.29$$

$$P(\overline{I}|M) = \frac{P(\overline{I} \cap M)}{P(M)} = \frac{0.10}{0.40} = 0.25$$

$$P(\overline{I}|M) = \frac{P(\overline{I} \cap M)}{P(M)} = \frac{0.10}{0.40} = 0.25$$

$$P(\overline{I}|M) = \frac{10}{10/20}$$

Independence

Independence of Events

In Example 1, knowing an event occurred changed the probability of another event occurring.

However, sometimes knowing an event occurs *doesn't change* the probability of the other event.

In this case, we say the events are independent.

Definition

Events A and B are *independent* if . . .

- 1. $P(A \cap B) = P(A)P(B)$ or equivalently
- 2. $P(A|B) = P(A) \text{ if } P(B) \neq 0$

knowing B occurs has no impact on probability

Independence of Events Cont.

Example 2: Check if events are independent

Is owning an Iphone and owning MacBook independent? Recall that P(I) = 0.65, P(M) = 0.4, $P(I \cap M) = 0.35$

$$P(INM) = 0.35$$

$$P(I)P(M) = (0.65)(0.40) = 0.26$$

Since
$$P(I \cap M) \neq P(I) P(M)$$
,
 I, M are not independent

12/20

Independence of Events Cont.

Example 3: Using independence to simplify calculations If A, B independent $\rightarrow P(A \cap B) = P(B)P(A|B) = P(B)P(A)$

Roll a die 4 times. Assuming that rolls are independent, what is the probability of obtaining at least one '6'?

$$P(\text{at least 1 '6'}) = 1 - P(\text{No '6's})$$

Indep

$$\begin{aligned}
& = 1 - P(\text{no '6' on roll } 1 \cap \text{no '6' on roll } 2 \cap \cdots \cap \text{no '6' on roll } 4) \\
& = 1 - \left[\left(\frac{5}{6} \right) \left(\frac{5}{6} \right) \left(\frac{5}{6} \right) \left(\frac{5}{6} \right) \right] \\
& = 1 - \left[\left(\frac{5}{6} \right)^4 \right]
\end{aligned}$$

Independent vs. Disjoint

Completely different concepts!

Independent:

$$P(A \cap B) = P(A)P(B)$$

Disjoint:

$$P(A \cap B) = P(\emptyset) = 0$$

 no overlap

14/20

System Reliability

Application: System Reliability

Parallel: A parallel system consists of k components (c_1, \ldots, c_k) arranged such that the system works if and only if at least one of the k components functions properly.

Series: A series system consists of k components (c_1, \ldots, c_k) arranged such that the system works if and only if ALL components function properly.

Reliability: Reliability of a system is the probability that the system works. $\frac{15/20}{}$

Reliability of Parallel System

Example 4:

Let c_1, \ldots, c_k denote the k components in a *parallel* system. Assume the k components operate independently, and

- $P(c_j \text{ works }) = p_j$. What is the reliability of the system?
- P(c; fails) = P($\overline{c_j}$ works) = 1-P(c_j works) = 1-P; P(system works) = P(at least one component works) = 1-P(all components fail) = 1-P(c_1 fails c_2 fails c_3 fails) = 1-P(c_1 fails) P(c_2 fails) ···· P(c_k fails)] = 1- $\sum_{j=1}^{k} P(c_j$ fails) = 1- $\sum_{j=1}^{k} P(c_j$ fails)

Reliability of Series System

Example 5:

Let c_1, \ldots, c_k denote the k components in a *series* system. Assume the k components operate independently, and $P(c_j \text{ works }) = p_j$. What is the reliability of the system?

$$P(\text{system works}) = P(\text{all components work})$$

$$= P(c_1 \text{ works} \cap c_2 \text{ works} \cap \cdots \cap c_k \text{ works})$$

$$= P(c_1 \text{ works} \cap c_2 \text{ work} \cap \cdots \cap c_k \text{ works})$$

$$= \prod_{j=1}^k P(c_j \text{ works})$$

$$= \prod_{j=1}^k p_j$$

17/20

Reliability Example

Example 6: Suppose a base is guarded by 3 radars (R_1, R_2, R_3) , and the radars are independent of each other. The detection probability are . . .

•
$$P(R_1) = P(R_1 \text{ detects}) = 0.95$$

• $P(R_2) = P(R_2 \text{ detects}) = 0.98$
• $P(R_3) = P(R_3 \text{ detects}) = 0.99$

Does a system in *parallel* or *series* have higher reliability for this scenario?

$$P(\overline{R}_1) = P(R_1 \text{ doesn't work}) = 1 - P(P_1) = 1 - 0.95 = 0.05$$

$$P(\overline{R}_2) = P(R_2 \parallel 11) = 1 - P(R_2) = 1 - 0.98 = 0.02$$

$$P(\overline{R}_3) = P(\overline{R}_3 \parallel 11) = 1 - P(R_3) = 1 - 0.99 = 0.01_{18/20}$$

Reliability Example

$$P(SyS. Works) = P(at least one radar works)$$

= $1 - P(none works)$ "and"
= $1 - P(\overline{R_1} \cap \overline{R_2} \cap \overline{R_3})$
Indep($s = 1 - [P(\overline{R_1})P(\overline{R_2})P(\overline{R_3})]$
= $1 - [(0.05)(0.02)(0.01)]$
= 0.999999

19 / 20

Reliability Example

P(sys. works) = P(all radars work)

Indept =
$$P(R_1 \cap R_2 \cap R_3)$$

= $P(R_1)P(R_2)P(R_3)$
= $(0.95)(0.98)(0.99)$
= 0.922