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Tree Diagram



Example 1: Suppose you randomly select one of 3 boxes, and then

randomly select a coin from inside the box. The contents of the
boxes are Box | Box 2 Box >

|c7» ( o O G S
e Box 1: 2 gold coins, 1 silver coin Sb]

O 5SS
e Box 2: 3 gold coins ’

e Box 3: 1 gold coin, 4 silver coins

Let events B; = ith box is selected for i = 1,2, 3,

G = gold coin selected, and S = silver coin selected.

We can visualize this step-wise procedure with a tree diagram.

Using a Tree Diagram '

A tree diagram shows all possible outcomes of step-wise procedures
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Using a Tree Diagram Cont.

What is the probability of choosing a gold coin P(G)?

Box Coin

e What are the “total” different paths to get to gold coin? P(A\B):ﬂamé)
(BinNG)or (BoNG)or(BsNG) DQS;\V\'\V?QV) Cas snad P(B)
e These are disjgyim:queV/ Jb P(O\{,Q\J\\\ﬂ
P(G)=P(BiNG)+ P(BoNG)+ P(B3NG)
P(B1)P(G|B1) A P(B2)P(G|B,) + P(B2)P(G|B2)
= B+ (2)10) + (3)(2) = 0.2

This calculation is done using Law of Total Probability.
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Law of Total Probability




Cover/Partition 7

Definition:
A collection of events By, ... By is a cover or partition of Q if

1. the events are pairwise disjoint (B; N B; = () for i # j), and
2. the union of the events is Q ( Ufle By = £).

We can represent a cover using a Venn diagram:

By
m By
Q2

Note: In a tree diagram, the branches of the tree form a cover.
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Law of Total Probability

Theorem (Law of Total Probability)
If the collection of events By, ..., By is a cover of , and A is an

event, then P(aNGL)
NN,

K
P(A) =) P(AIB)P(B)).
=1

Proof
e A=(BiNA)U...U(BxNA)
o P(A)=P(BiNA)+...4+ P(BxNA)
= P(A|B1)P(B1) + ...+ P(A|Bx)P(Bx)

Bk
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Bayes’ Rule

Bayes’ Rule

Theorem (Bayes’ Rule)

If By,..., Bk is a cover or partition of €, and A is an event, then

GAB)P(E) + PCANG)
Cl (AB)P(E)) ¢ p(R)

_ P(ANB) _ P(AIB)P(B))
P(BjlA) = P(A)J ¥ P(:‘|BJ)P(BJ)

Why?

e Bayes rule — way to “flip” conditional probabilities.
e |f we know P(A|B;) and P(B;), then we can obtain P(B;|A
(AIB;) and P(5;) PBIA)

e Extremely useful for real world applications!



Applying Bayes Rule

P(N)=0.2 jP(I):oJ)P(s)=&?

Example 2:

My email is divided into 3 folders: Normal, Important, Spam.
From past experience, the probability of emails belonging to these
folders is 0.2, 0.1, and 0.7 respectively.

e Out of normal emails, the word “free” occurs with probability

0.00. P(¥ |N)=0-0)
e Out of important emails, “free” occurs with probability 0.01. ¥ (': II} =001
e Out of spam emails, “free” occurs with probability 0.9. P( FlS) =0.9

My spam filter reads an email that contains the word “free”. What
is the probability that this email is spam?

P(sIF) =
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Applying Bayes Rule Cont.

Define events:

N = email is normal, /| = email is important, S = email is spam
F = email contains “free”, F = email doesn’'t contain “free”

Given:
PiNj=102 P{l)=01 P(5)=0.7
P(F|N) =10.01
P(F|1)=10.01
P(F|5) = 0.8
P(S|F) =7 (This is what we want to know)

L
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Applying Bayes Rule Cont.

What is the probability that my email is spam given that it
contains the word “free"?

. PSTF]
P(SIF) =~y
____ P)P(FIS)
| @(5)’/5"(/:[3)? P(I)P(F|I)ﬁ+ P(N)P(f]"N)“‘y “&Eﬂéb
silliV: - (0-+)(04) L6T®
o) -
®:79 [ (0-3)€0.9) + (0-1)(001) 4 (0-2) €0-0])

| 063 + 0.001 + 0.002
Muthiply abny bianch 0995
X add vp Wighlighed
brav(hes o j€+ N 10 /14
P(F) & denomivator

Applying Bayes Rule Cont.

Conceptual understanding

(l

i

e Before knowing anything
— probability that email is spam was P(S) = 0.7.

e After knowing that the email contains the word “free”
— update probability based on this knowledge.
e After knowing the email contains “free"
— probability of the email being spam is P(S|F) = 0.995.
e Since this probability is more than 50%, we can classify this
email as spam.

e In machine learning/statistics, this procedure is called a naive
Bayes classifier.
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Example

Bayes’ and LOTP Example

_ (L)
= cancer Example 3: Approxmatelf women aged 40-50 have breast ?(.'('l C)

Bl
cancer. A woman with breast cancer ha{'90% Jchance of testing

-C- = N0 cancev positive for cancer from a mammogram. A woman without breast

4= tests pos. cancer has a@ciance of testing positive for cancer (called a P+ la)

"false positive” ). What is the probability that a woman has breast

3 Y0 . i —
— =R 3 cancer given that she tested positive?

Want o Fnow  pre |+ )= 7%
Given
p(c)= 0-0) p(C) =099
oC4]0)= 090 p(-le) = 010
P(+1T)=00S  P(=1C)= 095

' S P(Cl+) =2 ,
what | cltﬁowj 12/14

Since we want Yo “Hup! e (4
Vse  Bayes’ Pule



Bayes'’ and LOTP Example Cont.

Bayes

p( c)P(HC) P (C) PCHIC)
?CC (+> = @ @(C)PC'HC)“' PCC)P(‘HC) )

Uiy LO'TP
0s¢ Law &b T&hl ?(o\oa\m\l*\-] fo get Devxommc&bv

L ghtaned  Rom prandies &
free diagram

p(+) = PCOPHIO + PCT)PCHIT)
=(Gol)(64) + (0-99) (0.05)

= (0.009 + 0.0449S
= 0. 0585
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Bayes’ and LOTP Example Cont.

pacle o Sayes’ @yle
PCC\+>: _fPCC)?C‘HC)

P)
= PCC)'PC‘HC)

P(Q) PCHIC) + pCC) PCHIT)
(0.01) (0-90)

'(o‘on)[o,qo) + (049)(0-03)
- (-1S38

Mévw\ Exam | Maleria]

14 /14



