Lecture 4

Law of Total Probability & Bayes¹Rule

Manju M. Johny

STAT 330 - Iowa State University

1 / 14

Tree Diagram

Tree Diagram

Example 1: Suppose you randomly select one of 3 boxes, and then randomly select a coin from inside the box. The contents of the boxes are . . .

- Box 1: 2 gold coins, 1 silver coin
- Box 2: 3 gold coins
- Box 3: 1 gold coin, 4 silver coins

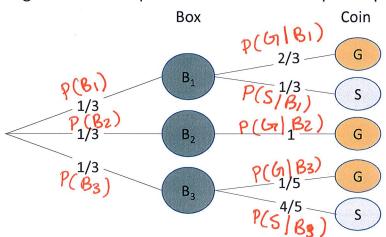
Let events $B_i = i^{th}$ box is selected for i = 1, 2, 3, G = gold coin selected, and S = silver coin selected.

We can visualize this *step-wise procedure* with a *tree diagram*.

2/14

Using a Tree Diagram

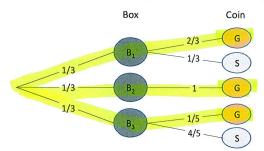
A tree diagram shows all possible outcomes of step-wise procedures



$$P(B_i) = \frac{1}{3}$$
 for $i = 1, 2, 3$
 $P(G|B_1) = \frac{2}{3}$, $P(S|B_1) = \frac{1}{3}$
 $P(G|B_2) = 1$
 $P(G|B_3) = \frac{1}{5}$, $P(S|B_3) = \frac{4}{5}$

Using a Tree Diagram Cont.

What is the probability of choosing a gold coin P(G)?



• What are the "total" different paths to get to gold coin?

P(AIB)=P(ANB)

 $(B_1 \cap G)$ or $(B_2 \cap G)$ or $(B_3 \cap G)$

- Definition of Conditional Probability

These are disjoint events

 $P(G) = P(B_1 \cap G) + P(B_2 \cap G) + P(B_3 \cap G)$

 $=(P(B_1)P(G|B_1) + P(B_2)P(G|B_2) + P(B_2)P(G|B_2)$

 $= (\frac{1}{3})(\frac{1}{3}) + (\frac{1}{3})(1) + (\frac{1}{3})(\frac{1}{5}) = 0.62$

This calculation is done using Law of Total Probability.

4/14

Law of Total Probability

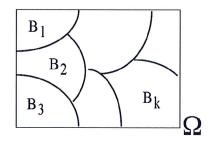
Cover/Partition

Definition:

A collection of events $B_1, \ldots B_k$ is a *cover* or *partition* of Ω if

- 1. the events are pairwise disjoint $(B_i \cap B_j = \emptyset \text{ for } i \neq j)$, and
- 2. the union of the events is Ω ($\bigcup_{i=1}^k B_i = \Omega$).

We can represent a cover using a Venn diagram:



Note: In a tree diagram, the branches of the tree form a cover.

5/14

Law of Total Probability

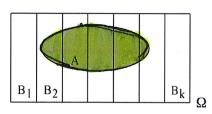
Theorem (Law of Total Probability)

If the collection of events B_1, \ldots, B_k is a cover of Ω , and A is an event, then $P(A \cap B_i)$

$$P(A) = \sum_{i=1}^{k} \underbrace{P(A|B_i)P(B_i)}_{P(A|B_i)P(B_i)}.$$

<u>Proof</u>

- $A = (B_1 \cap A) \cup \ldots \cup (B_k \cap A)$
- $P(A) = P(B_1 \cap A) + \ldots + P(B_k \cap A)$ = $P(A|B_1)P(B_1) + \ldots + P(A|B_k)P(B_k)$



Bayes' Rule

Bayes' Rule

Theorem (Bayes' Rule)

If B_1, \ldots, B_k is a cover or partition of Ω , and A is an event, then

$$P(B_j|A) = \underbrace{\frac{P(A|B_j)P(B_j)}{\sum_{j=1}^k P(A|B_j)P(B_j)}}_{P(A|B_j)P(B_j)} \leftarrow \underbrace{P(A \cap B_j)}_{P(A)}$$

Why?

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)} = \frac{P(A|B_j)P(B_j)}{\sum_{j=1}^k P(A|B_j)P(B_j)}$$

- ullet Bayes rule o way to "flip" conditional probabilities.
- If we know $P(A|B_j)$ and $P(B_j)$, then we can obtain $P(B_j|A)$
- Extremely useful for real world applications!

Applying Bayes Rule

$$P(N) = 0.7$$
, $P(I) = 0.1$, $P(S) = 0.7$

Example 2:

My email is divided into 3 folders: Normal, Important, Spam. From past experience, the probability of emails belonging to these folders is 0.2, 0.1, and 0.7 respectively.

- Out of normal emails, the word "free" occurs with probability 0.01. P(F|N) = 0.01
- Out of important emails, "free" occurs with probability 0.01. P(F|I)=0.01
- Out of spam emails, "free" occurs with probability 0.9. P(FIS) = 0.9

My spam filter reads an email that contains the word "free". What is the probability that this email is spam?

$$P(SIF) = ?$$

8/14

Applying Bayes Rule Cont.

Define events:

N= email is normal, I= email is important, S= email is spam F= email contains "free", $\overline{F}=$ email doesn't contain "free"

Given:

$$P(N) = 0.2, P(I) = 0.1, P(S) = 0.7$$

$$P(F|N) = 0.01$$

$$P(F|I) = 0.01$$

$$P(F|S) = 0.9$$

P(S|F) = ? (This is what we want to know)

Applying Bayes Rule Cont.

What is the probability that my email is spam given that it contains the word "free"?

$$P(S|F) = \frac{P(S \cap F)}{P(F)}$$

$$= \frac{P(S)P(F|S)}{P(S)P(F|S) + P(I)P(F|I) + P(N)P(F|N)} = P(F)$$

$$= \frac{(0.7)(0.9)}{(0.7)(0.9)} + \frac{(0.7)(0.01) + (0.2)(0.01)}{(0.7)(0.01) + (0.2)(0.01)}$$

$$= \frac{0.63}{0.63 + 0.001 + 0.002}$$
Multiply along branch
$$= 0.995$$
And up highlighted
branches to get
$$P(F) \leftarrow denominator$$

Applying Bayes Rule Cont.

Conceptual understanding

- Before knowing anything
 - \rightarrow probability that email is spam was P(S) = 0.7.
- After knowing that the email contains the word "free"
 - ightarrow update probability based on this knowledge.
- After knowing the email contains "free"
 - \rightarrow probability of the email being spam is P(S|F) = 0.995.
- Since this probability is more than 50%, we can *classify* this email as spam.
- In machine learning/statistics, this procedure is called a naive Bayes classifier.

Example

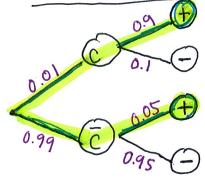
Bayes' and LOTP Example

```
P(C)
               Example 3: Approximately 1% of women aged 40-50 have breast P(+|C)
C = cancer
               cancer. A woman with breast cancer has 90% chance of testing
C = no cancer
               positive for cancer from a mammogram. A woman without breast
+ = +ests pos. cancer has a 5% chance of testing positive for cancer (called a
                                                                             -P(+1C)
               "false positive"). What is the probability that a woman has breast
               cancer given that she tested positive?
                   Want to know P(C1+)= ?
               P(c) = 0.01 P(\bar{c}) = 0.99
               P(+|C) = 0.90 P(-|C) = 0.10
                P(+|\bar{c}|) = 0.05 P(-|\bar{c}|) = 0.95
               What is P(C|+)=?
Since we want to "flip" the condition, |
Use Bayes' Rule
                                                                           12/14
```

Bayes' and LOTP Example Cont.

$$\frac{\text{Bayes}}{\text{P(c)+(c)}} = \frac{\text{P(c)P(+1c)}}{\text{P(c)P(+1c)}} = \frac{\text{P(c)P(+1c)}}{\text{Using LoTP}}$$

Use Law ob Total Probability to get Denominator



by obtained from branches & tree diagram

$$P(+) = P(c)P(+|c) + P(c)P(+|c)$$

$$= (0.01)(0.9) + (0.99)(0.05)$$

$$= 0.009 + 0.0495$$

$$= 0.0585$$

13 / 14

Bayes' and LOTP Example Cont.

Back to Bayes' Rule
$$P(C|+) = \frac{P(C)P(+|C)}{P(+)}$$

$$= \frac{P(C)P(+|C)}{P(C)P(+|C)} + P(\overline{C})P(+|\overline{C})$$

$$= \frac{(0.01)(0.90)}{(0.01)(0.90) + (0.99)(0.05)}$$

$$= 0.1538$$

End Exam | Material