Lecture 5

Random Variables \& Distributions

Manju M. Johny
STAT 330 - Iowa State University

Random Variable

Random Variable

- Random variables (R.V.) connect random experiment to data
- Denote random variables with capital letters (X, Y, Z, etc)
- The values of a R.V. are determined by the outcome of a random experiment.

Definition

A random variable (R.V.) is a function that maps the sample space (Ω) to real numbers ($\Re)$

$$
X: \Omega \rightarrow \Re
$$

Random Variable Cont.

Example 1: Suppose you toss 3 coins, and observe the face up for each flip. $\Omega=\{H H H, H H T, \ldots, T T T\} ;|\Omega|=8$
We are interested in the number of heads we obtain in 3 coin tosses.

What is the random variable X ?
$X=\#$ of heads in 3 coin tosses
Notation:
$X \equiv$ Random variable
$x \equiv$ Realized value
$X=x \rightarrow$ "random variable X takes on the value x ".
$\{X=x\}$ is just an event
Consider the event 1 or 2 heads. This is $\{X=1\} \cup\{X=2\}$

Types of Random Variables

Types of Random Variables

Two types of random variables:
Discrete Random Variable Continuous Random Variable Sample space (Ω) maps to finite Sample space (Ω) maps to an or countably infinite set in \Re Ex: $\{1,2,3\},\{1,2,3,4, \ldots\}$ uncountable set in \Re.
Ex: $(0, \infty),(10,20)$

Image of a Random Variable

Definition

The image of a random variable is defined as the values the random variable can take on.

$$
\operatorname{Im}(X)=\{x: x=X(\omega) \text { for some } \omega \in \Omega\}
$$

Example 2:

1. Put a disk drive into service. Let $Y=$ time till the first major failure. $\operatorname{Im}(Y)=(0, \infty)$.
Image of Y is an interval (uncountable)
$\rightarrow Y$ is a continuous random variable.
2. Flip a coin 3 times. Let $X=\#$ of heads obtained. $\operatorname{Im}(X)=\{0,1,2,3\}$. Image of X is a finite set
$\rightarrow X$ is a discrete random variable.

Probability Mass Function

Probability Mass Function

Two things to know about a random variable X :
(1) What are the values X can take on? (what is its image?)
(2) What is the probability that X takes on each value?
(1) and (2) together gives the probability distribution of X.

Definition
Let X be a discrete random variable.
The probability mass function (pmf) of X is $p_{X}(x)=P(X=x)$.
Properties of pmf:

1. $0 \leq p_{X}(x) \geq 1$
2. $\sum_{x} p_{X}(x)=1$

Probability Mass Function Cont.

Example 3: Which of the following are valid probability mass functions (pmfs)?

1. | x | -3 | -1 | 0 | 5 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{X}(x)$ | 0.1 | 0.45 | 0.15 | 0.25 | 0.05 |
2. | y | -1 | 0 | 1.5 | 3 | 4.5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p_{Y}(y)$ | 0.1 | 0.45 | 0.25 | -0.05 | 0.25 |
3.

z	0	1	3	5	7
$p_{Z}(z)$	0.22	0.18	0.24	0.17	0.18

Probability Mass Function Cont.

Example 4: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

1. Define the random variable X.
2. What is the image of X ?
3. What is the pmf of X ? (find $p_{X}(x)$ for all x)

Probability Mass Function Cont.

Cumulative Distribution Function

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of X is

$$
F_{X}(t)=P(X \leq t)
$$

- The pmf is $P x(x)=P(X=x)$, the probability that R.V. X is equal to value x.
- The cdf is $F_{X}(t)=P(X \leq t)$, the probability that R.V. X is less than or equal to t.

Relationship between pmf and cdf

- $F_{X}(t)=P(X \leq t)=\sum_{x \leq t} p_{X}(x)=\sum_{x \leq t} P(X=x)$

Properties of CDFs

Properties of CDFs

1. $0 \leq F_{X}(t) \leq 1$
2. F_{X} is non-decreasing (if $a \leq b$, then $F(a) \leq F(b)$.
3. $\lim _{t \rightarrow-\infty} F_{X}(t)=0$ and $\lim _{t \rightarrow \infty} F_{X}(t)=1$
4. F_{X} is right-continuous with respect to t

Cumulative Distribution Function Cont.

Example 6: Roll a fair die. Let $X=$ the number of dots on face up

x	1	2	3	4	5	6
(pmf) $p_{X}(x)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
(cdf) $F_{X}(x)$	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1
	cDF					

Cumulative Distribution Function Cont.

Example 7: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

From example 4, the pmf is

x	0	1	2	3
$(p m f)$ $(c d f)$ (x) $F_{X}(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

What is the cdf of X ?

