Lecture 5

Random Variables & Distributions

Manju M. Johny

STAT 330 - Iowa State University

Random Variable

Random Variable

- Random variables (R.V.) connect random experiment to data
- Denote random variables with capital letters (X, Y, Z, etc)
- The values of a R.V. are determined by the outcome of a random experiment.

Definition

A random variable (R.V.) is a function that maps the sample space (Ω) to real numbers (\Re)

$$X:\Omega\to\Re$$

Example 1: Suppose you toss 3 coins, and observe the face up for each flip. $\Omega = \{HHH, HHT, \dots, TTT\}; |\Omega| = 8$ We are interested in the number of heads we obtain in 3 coin tosses.

What is the random variable X?

X = # of heads in 3 coin tosses

Notation:

- $X \equiv \mathsf{Random} \ \mathsf{variable}$
- $x \equiv$ Realized value
- $X = x \rightarrow$ "random variable X takes on the value x".
- $\{X = x\}$ is just an event

Consider the event 1 or 2 heads. This is $\{X = 1\} \cup \{X = 2\}$

Types of Random Variables

Types of Random Variables

Two types of random variables:

Discrete Random Variable

Sample space (Ω) maps to finite or countably infinite set in \Re Ex: $\{1, 2, 3\}, \{1, 2, 3, 4, \ldots\}$ Ex: $(0, \infty), (10, 20)$

Continuous Random Variable

Sample space (Ω) maps to an uncountable set in \Re .

Definition

The *image* of a random variable is defined as the values the random variable can take on.

$$Im(X) = \{x : x = X(\omega) \text{ for some } \omega \in \Omega\}$$

Example 2:

- Put a disk drive into service. Let Y = time till the first major failure. Im(Y) = (0,∞).
 Image of Y is an interval (uncountable)
 → Y is a continuous random variable.
- Flip a coin 3 times. Let X = # of heads obtained. Im(X) = {0,1,2,3}. Image of X is a finite set → X is a discrete random variable.

Probability Mass Function

Two things to know about a random variable X:

- (1) What are the values X can take on? (what is its image?)
- (2) What is the probability that X takes on each value?
- (1) and (2) together gives the *probability distribution* of X.

Definition

Let X be a discrete random variable.

The probability mass function (pmf) of X is $p_X(x) = P(X = x)$.

Properties of pmf:

- 1. $0 \le p_X(x) \ge 1$
- 2. $\sum_{x} p_X(x) = 1$

Example 3: Which of the following are *valid* probability mass functions (pmfs)?

2.
$$\frac{y}{p_Y(y)}$$
 = 0.1 = 0.15 = 3 = 4.5
 0.25 = 0.05 = 0.25

3.
$$\frac{z}{p_Z(z)}$$
 0.22 0.18 0.24 0.17 0.18

Example 4: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

- 1. Define the random variable X.
- 2. What is the image of X?
- 3. What is the pmf of X? (find $p_X(x)$ for all x)

Probability Mass Function Cont.

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of X is

 $F_X(t) = P(X \leq t)$

- The pmf is Px(x) = P(X = x), the probability that R.V. X is equal to value x.
- The cdf is F_X(t) = P(X ≤ t), the probability that R.V. X is less than or equal to t.

Relationship between pmf and cdf

•
$$F_X(t) = P(X \le t) = \sum_{x \le t} p_X(x) = \sum_{x \le t} P(X = x)$$

Properties of CDFs

Properties of CDFs

1.
$$0 \le F_X(t) \le 1$$

- 2. F_X is non-decreasing (if $a \le b$, then $F(a) \le F(b)$.
- 3. $\lim_{t\to-\infty} F_X(t) = 0$ and $\lim_{t\to\infty} F_X(t) = 1$
- 4. F_X is right-continuous with respect to t

Cumulative Distribution Function Cont.

 Example 6: Roll a fair die. Let X = the number of dots on face up

 x
 1
 2
 3
 4
 5
 6

 (pmf) $p_X(x)$ 1/6
 1/6
 1/6
 1/6
 1/6

 (cdf) $F_X(x)$ 1/6
 2/6
 3/6
 4/6
 5/6
 1

Cumulative Distribution Function Cont.

Example 7: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

From example 4, the pmf is

X	0	1	2	3
(pmf) $p_X(x)$	1/8	3/8	3/8	1/8
$(cdf) F_X(x)$				

What is the cdf of X?