Lecture 5

Random Variables & Distributions
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Types of Random Variables

Types of Random Variables

X I
QO R
Domain Range
Two types of random variables:
Discrete Random Variable Continuous Random Variable
Sample space (£2) maps to finite Sample space (2) maps to an
or countably infinite set in R uncountable set in .
Ex: {1,2,3}, {1,2,3,4,...} Ex: (0, 00), (10,20)
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Image of a Random Variable

Definition
The image of a random variable is defined as the values the
random variable can take on.

Im(X) = {x : x = X(w) for some w € Q}

| T waeuer e reiizcd Vaes,
Example 2: Sy MOV N com o

1. Put a disk drive into service. Let Y = time till the first major
failure. Im(Y) = (0, Oo)'/cow\'\mw“-—5
Image of Y is an interval (uncountable)
— Y is a continuous random variable.

2. Flip a coin 3 times. Let X = # of heads obtained.
Im(X) = {0,1,2,3}. Image of X is a finite set
— X is a discrete random variable.
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Probability Mass Function
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Two things to know about a random variable X:

(1) What are the values X can take on? (what is its image?)

(2) What is the probability that X takes on each value? 9(0%\(-(}% CD*,(\?\

(1) and (2) together gives the probability distribution of X.

Definition \\’c\'\t Ma\\’fe)

Let X be a discrete random variable. ) (el
The probability mass function (pmf) of X is px(x) = P(X = x).

Properties of pmf: Cad*

oba\o\\l’h‘-"
2 3 px()=1 & Ffm%,r sum ¥ 4
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functions (pmfs)?

Example 3: Which of the following are valid probability mass
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Probability Mass Function Cont.

Example 4: Suppose you toss 3 coins, and observe the face up for
each flip. We are interested in the number of heads we obtain in 3
coin tosses.

1. Define the random variable X.

= 4 b heads obtdved w3 com £lips
2. What is the image of X7

T (X)= 20,1,2,3%
3. What is the pmf of X7 (flnd px(x) for all x)
P(X=0) = P(TTT) = (NHDF) =GV 3
P(X") P(HTT)* P(THT)—»P(TTH) 3(““)
R=2)= PHHTY+ P(HTR)+P(THH) = 3 (£)°

P(¥=3) = P(HRHH) = ()’

®|w cp[uo
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8
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Probability Mass Function Cont.

We  Cavn wnde PME oS a table

—
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o wnte PMF as a funchon
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Cumulative Distribution Function

Cumulative Distribution Function

Definition
The cumulative distribution function (cdf) of Xis

Fx(t) = PX(E)D)

e The pmfis Px(x) = P(X = x), the probability that R.V. X is
equal to value x.

e The cdf is Fx(t) = P(X < t), the probability that R.V. X is
less than or equal to t.

Relationship between pmf and cdf

. FX(t): P(X < t): ngtpx(x) :ngt'D(X :X)
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Properties of CDFs

Properties of CDFs

1, 0% Fx(t)g il

2. Fx is non-decreasing (if a < b, then F(a) < F(b).
3. lim¢—oo Fx(t) = 0 and lim¢_o0 Fx(t) =1
4. Fx is right-continuous with respect to t
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Cumulative Distribution Function Cont.
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F (D =P(Xe

Example 6: Roll a fair die. Let X = the number of dots on face up

X | i}

2 3 4 5

6

(pmf) px(x)
(cdf) Fx(x)
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=pPCX=\)= Y% 2
Fy ()= P(X%2) s
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= p(X \)*P(xfz)e
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6
L Fy (35)=7% (R £35)
=p (X=D)+P(X=2)
+P(X=3)
= 34



Cumulative Distribution Function Cont.

Example 7: Suppose you toss 3 coins, and observe the face up for
each flip. We are interested in the number of heads we obtain in 3

coin tosses. PMF
Px(x)
From example 4, the pmf is
) +
0%+
al | O 1 2 3 ol +
(pmf) px(x) | 1/8 3/8 3/8 1/8 o4t o o
) Fx() | Ve %o Yo 1 CF %
(o] \ 2 2 4y X
What is the cdf of X? CDF Fx (V) S
.y
—p
z ?.: +'-l i
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