Lecture 5

Random Variables & Distributions

Manju M. Johny

STAT 330 - Iowa State University

1/13

Random Variable

Types of Random Variables

Types of Random Variables

Two types of random variables:

Discrete Random Variable

Sample space (Ω) maps to finite or countably infinite set in \Re

Ex: $\{1,2,3\}$, $\{1,2,3,4,\ldots\}$

Continuous Random Variable

Sample space (Ω) maps to an uncountable set in \Re .

Ex: $(0, \infty)$, (10, 20)

Image of a Random Variable

Definition

Example 2:

The *image* of a random variable is defined as the values the random variable can take on.

$$Im(X) = \{x : x = X(\omega) \text{ for some } \omega \in \Omega\}$$

$$\text{Whatever the realized values}$$

$$\text{Ob your R.V. can be}$$

- 2. Flip a coin 3 times. Let X = # of heads obtained. $Im(X) = \{0, 1, 2, 3\}$. Image of X is a finite set $\to X$ is a discrete random variable.

 $\rightarrow Y$ is a continuous random variable.

5 / 13

Probability Mass Function

Probability Mass Function

Two things to know about a random variable X:

- (1) What are the values X can take on? (what is its image?)
- (2) What is the probability that X takes on each value?

(1) and (2) together gives the *probability distribution* of X.

Breukdown & Xnding

Breukdown & Xnding

and its corresponding

and probabilities

Definition

Let X be a discrete random variable.

(realized value) The probability mass function (pmf) of X is $p_X(x) = P(X = x)$.

Properties of pmf:

probabilities 1. $0 \le p_X(x) = 1$

2. $\sum_{x} p_X(x) = 1 \leftarrow Probabilities$ when to 1

6/13

Probability Mass Function Cont.

Example 3: Which of the following are *valid* probability mass Can be written as

functions (pmfs)?

1. $\frac{x}{p_X(x)} = \frac{-3}{0.15} = \frac{-1}{0.45} = \frac{0.1}{0.45} = \frac{0.1}{0.45} = \frac{0.1}{0.45} = \frac{0.1}{0.45} = \frac{0.15}{0.25} = \frac{$

NOT y -1 0 1.5 3 $p_Y(y)$ 0.1 0.45 0.25 -0.05

Probability Mass Function Cont.

Example 4: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the <u>number of heads we obtain in 3</u> coin tosses.

- 1. Define the random variable X. $X = \# \delta b$ heads obtained in 3 coin flips
- 2. What is the image of X?

$$Im(X) = {20,1,2,33}$$

3. What is the pmf of X? (find $p_X(x)$ for all x) $P(X=0) = P(TTT) = (\frac{1}{2})(\frac{1}{2})(\frac{1}{2}) = (\frac{1}{2})^3 = \frac{1}{8}$ $P(X=1) = P(HTT) + P(THT) + P(TTH) = 3(\frac{1}{2})^3 = \frac{3}{8}$ $P(X=2) = P(HHT) + P(HTH) + P(THH) = 3(\frac{1}{2})^3 = \frac{3}{8}$ $P(X=3) = P(HHH) = (\frac{1}{2})^3 = \frac{1}{8}$

8/13

Probability Mass Function Cont.

We can write PMF as a table

\propto	0)	2.	3
$P_{X}(x)$	1/8	3/8	3/8	1/8

or write PMF as a function

$$P_{\mathbf{X}}(\mathbf{x}) = \begin{cases} \frac{1}{8} & \text{for } \mathbf{x} = 0,3\\ \frac{3}{8} & \text{for } \mathbf{x} = 1,2 \end{cases}$$

- . What is prob ob obtaining 2 heads? P(X=Z) = 3/8
- . What is prob ob obtaining 2 or 3 heads? P(2X=23U2X=33) = P(X=2) + P(X=3) 9/13 = 3/8 + 1/8 = 1/2

Cumulative Distribution Function

Cumulative Distribution Function

Definition

The cumulative distribution function (cdf) of X is

$$F_X(t) = P(X \le t)$$

- The pmf is Px(x) = P(X = x), the probability that R.V. X is equal to value x.
- The cdf is $F_X(t) = P(X \le t)$, the probability that R.V. X is less than or equal to t.

Relationship between pmf and cdf

•
$$F_X(t) = P(X \le t) = \sum_{x \le t} p_X(x) = \sum_{x \le t} P(X = x)$$

Properties of CDFs

Properties of CDFs

- 1. $0 \le F_X(t) \le 1$
- 2. F_X is non-decreasing (if $a \le b$, then $F(a) \le F(b)$.
- 3. $\lim_{t \to -\infty} F_X(t) = 0$ and $\lim_{t \to \infty} F_X(t) = 1$
- 4. F_X is right-continuous with respect to t

11/13

Cumulative Distribution Function Cont.

Example 6: Roll a fair die. Let X = the number of dots on face up

X	1	2	3	4	5	6
(pmf) $p_X(x)$	1/6	1/6	1/6	1/6	1/6	1/6
(cdf) $F_X(x)$						

$$F_{X}(1) = P(X \le 1)$$

= $P(X = 1) = \frac{1}{6}$

$$F_{X}(2) = P(X \le 2)$$

= $P(X = 1) + P(X = 2)$
= $\frac{1}{6} + \frac{1}{6}$
= $\frac{2}{6}$

$$F_{X}(4.9999) = P(X \le 4.99999)$$

$$= P(X = 1) + P(X = 2)$$

$$+ P(X = 3) + P(X = 4)$$

$$= \frac{4}{6}$$

$$F_{X}(3.5) = P(X \le 3.5)$$

$$= P(X = 1) + P(X = 2)$$

$$= 3/6$$

Cumulative Distribution Function Cont.

Example 7: Suppose you toss 3 coins, and observe the face up for each flip. We are interested in the number of heads we obtain in 3 coin tosses.

From example 4, the pmf is

X	0	1	2	3
(pmf) $p_X(x)$	1/8	3/8	3/8	1/8
(cdf) $F_X(x)$	1/8	4/8	7/8	1

What is the cdf of X?

