Lecture 6

Expected Value and Variance

Manju M. Johny

STAT 330 - Iowa State University

Expected Value

Expected Value

Example 1: Flip a coin 3 times. Let $X=\#$ of heads obtained in 3 flips. The probability mass function (pmf) of X is

x	0	1	2	3
$p_{X}(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

What number of heads do we "expect" to get?
0 obtained $\frac{1}{8}$ of the time
1 obtained $\frac{3}{8}$ of the time
2 obtained $\frac{3}{8}$ of the time
3 obtained $\frac{1}{8}$ of the time

Intuitively, we can think about taking $0\left(\frac{1}{8}\right)+1\left(\frac{3}{8}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right)$ as the "expected" number of heads

Expected Value

Definition

Let X be a discrete random variable. The expected value or expectation of $h(X)$ is

$$
E[h(X)]=\sum_{x} h(x) p_{X}(x)=\sum_{x} h(x) P(X=x)
$$

- The MOST IMPORTANT version of this is when $h(x)=x$

$$
E(X)=\sum_{x} x p_{X}(x)=\sum_{x} x P(X=x)
$$

- $E(X)$ is usually denoted by μ
- $E(X)$ is the weighted average of the x 's, where the weights are the probabilities of the x 's.

Expected Value Cont.

Example 2: Flip a coin 3 times. Let $X=\#$ of heads obtained in 3 flips. The probability mass function (pmf) of X is

x	0	1	2	3
$p_{X}(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Calculate the expected value of X.

$$
\begin{aligned}
E(X) & =\sum_{x} x p_{X}(x) \\
& =0 P(X=0)+1 P(X=1)+2 P(X=2)+3 P(X=3) \\
& =
\end{aligned}
$$

Variance

Variance \& Standard Deviation

Definition

The variance of a random variable X is

$$
\operatorname{Var}(X)=E\left[(X-E(X))^{2}\right]=\sum(x-E(X))^{2} \cdot p_{X}(x)
$$

The standard deviation of a random varriable X is

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

- $\operatorname{Var}(X)$ is usually denoted by σ^{2}
- Units for variance is squared units of X.
- Units for the standard deviation is same as units for X.

SHORT CUT (use this formula to find variance)

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\sum_{x} x^{2} P(X=x)-\left[\sum_{x} x P(X=x)\right]^{2}
\end{aligned}
$$

Variance Cont.

Example 3: Flip a coin 3 times. Let $X=\#$ of heads obtained in 3 flips. The probability mass function (pmf) of X is

x	0	1	2	3
$p_{X}(x)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Calculate the variance and standard deviation of X.

- $E(X)=\sum_{x} x p_{X}(x)=$
- $E\left(X^{2}\right)=\sum_{x} x^{2} p_{X}(x)=$

Variance Cont.

- $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=$
- $\sigma=\sqrt{\operatorname{Var}(X)}=$

Properties of $E(X) \& \operatorname{Var}(X)$

Operations with $E(X)$ and $\operatorname{Var}(X)$

X, Y are random variables; a, b, c are constants.
Operations with $E(\cdot)$

1. $E(a X)=a E(X)$
2. $E(a X+b Y+c)=a E(X)+b E(Y)+c$

Operations with $\operatorname{Var}(\cdot)$
3. $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$
4. $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
5. $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)$
(when X, Y are independent, $\operatorname{Cov}(X, Y)=0$. We'll discuss more about independence and define covariance in Lecture 9)

Chebyshev's Inequality

Chebyshev's Inequality

For any positive real number k, and random variable X with variance σ^{2} :

$$
P(|X-E(X)| \leq k \sigma) \geq 1-\frac{1}{k^{2}}
$$

- bounds the probability that X lies within a certain number of standard deviations from $E(X)$

