Exam 1 - In class - Fri, 9/27

- · Lectures 1-4 (upto & including Bayes' Rule)
- · Cloted book
- · Bring I page (front & back) note sheet
- · Bring calculator

Lecture 6

Expected Value and Variance

Manju M. Johny

STAT 330 - Iowa State University

1/9

Expected Value (Expectation)

Expected Value

Example 1: Flip a coin 3 times. Let X = # of heads obtained in 3 flips. The probability mass function (pmf) of X is

What number of heads do we "expect" to get?

- 0 obtained $\frac{1}{8}$ of the time
- 1 obtained $\frac{3}{8}$ of the time
- 2 obtained $\frac{3}{8}$ of the time
- 3 obtained $\frac{1}{8}$ of the time

Intuitively, we can think about taking $0(\frac{1}{8}) + 1(\frac{3}{8}) + 2(\frac{3}{8}) + 3(\frac{1}{8})$ as the "expected" number of heads

2/9

Expected Value

Definition

Let X be a discrete random variable. The expected value or expectation of h(X) is α function $\partial_{x} X$

$$E[h(X)] = \sum_{x} h(x)p_X(x) = \sum_{x} h(x)P(X = x)$$

• The **MOST IMPORTANT** version of this is when h(x) = x

$$E(X) = \sum_{x} x p_X(x) = \sum_{x} x P(X = x)$$

- E(X) is usually denoted by $\mu = "mu"$
- E(X) is the weighted average of the x's, where the weights are the probabilities of the x's.

identity sunction

Expected Value Cont.

Example 2: Flip a coin 3 times. Let X = # of heads obtained in 3 flips. The probability mass function (pmf) of X is

Calculate the expected value of X.

$$E(X) = \sum_{x} x p_{X}(x)$$

$$= 0P(X = 0) + 1P(X = 1) + 2P(X = 2) + 3P(X = 3)$$

$$= (0) (\frac{1}{6}) + (1)(\frac{3}{6}) + (2)(\frac{3}{6}) + (3)(\frac{1}{6})$$

$$= 1.5$$

4/9

Variance

Variance & Standard Deviation

Definition & Gives us idea of how spread apart the x's are wrt. E(x)

The variance of a random variable X is

$$Var(X) = E[(X - E(X))^{2}] = \sum (x - E(X))^{2} \cdot p_{X}(x)$$

The standard deviation of a random variable X is

" sigmu"
$$\sigma = \sqrt{Var(X)}$$

- Var(X) is usually denoted by σ^2
- Units for variance is squared units of X.
- Units for the standard deviation is same as units for X.

SHORT CUT (use this formula to find variance)

$$Var(X) = E(X^{2}) - [E(X)]^{2}$$

$$= \sum_{x} x^{2} P(X = x) - \left[\sum_{x} x P(X = x) \right]^{2}$$

5/9

Variance Cont.

Example 3: Flip a coin 3 times. Let X = # of heads obtained in 3 flips. The probability mass function (pmf) of X is

Calculate the variance and standard deviation of X.

Use the short cut to calculate Var(X) $Var(X) = E(X^2) - (E(X))^2$

•
$$E(X) = \sum_{x} xp_{X}(x) = 1.5$$
 (example 2)

•
$$E(X^2) = \sum_{x} x^2 p_X(x) =$$

= $(0^2)(\frac{1}{6}) + (1^2)(\frac{3}{6}) + (2^2)(\frac{3}{6}) + (3^2)(\frac{1}{6})$
= 3

Variance Cont.

•
$$\sigma = \sqrt{Var(X)} = \sqrt{0.75} = 0.866$$

Standard
deviation

7/9

Properties of E(X) & Var(X)

Operations with E(X) and Var(X)

X, Y are random variables; a, b, c are constants.

Operations with $E(\cdot)$

$$E(X) = 6$$

 $E(4X) = 4E(X) = 4(6)$

1. E(aX) = aE(X)

2.
$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

Operations with $Var(\cdot)$

3. $Var(aX) = a^2 Var(X)$ 4. $Var(aX + b) = a^2 Var(X)$ 5. $Var(aX + b) = a^2 Var(X)$ 1. Square constants when you pull it out ob variance any constants that are not attached to a R.V

5. $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$ (when X,Y are independent, Cov(X,Y) = 0. We'll discuss more about independence and define covariance in Lecture 9)

Var(X) = 10Var (4x) = 42 Var(x) = (42)(10)

8/9

Chebyshev's Inequality

Chebyshev's Inequality

For any positive real number k, and random variable X with variance σ^2 :

$$P(|X - E(X)| \le k\sigma) \ge 1 - \frac{1}{k^2}$$

 bounds the probability that X lies within a certain number of standard deviations from E(X)