Lecture 7

Discrete Distributions: Bernoulli and Binomial Distributions

Manju M. Johny

STAT 330 - Iowa State University

Discrete Distributions

Discrete Distributions

Common distributions for discrete random variables

- Bernoulli distribution

$$
X \sim \operatorname{Bern}(p)
$$

- Binomial distribution

$$
X \sim \operatorname{Bin}(n, p)
$$

- Geometric distribution

$$
X \sim \operatorname{Geo}(p)
$$

- Poisson distribution

$$
X \sim \operatorname{Pois}(\lambda)
$$

We will also discuss joint distributions for 2 or more discrete random variables

Bernoulli Distribution

Bernoulli Distribution

Bernoulli Experiment: Random experiment with only 2 outcomes:

- Success (S)
- Failure (F)
where $\mathrm{P}($ Success $)=\mathrm{P}(\mathrm{S})=p$ for $p \in[0,1]$

Example 1: (Bernoulli experiments):

1. Flip a coin: $\quad S=$ heads, $\quad F=$ tails
2. Watch stock prices: $S=$ increase, $F=$ decrease
3. Cancer screening: $S=$ cancer, $F=$ no cancer

Working with Bernoulli Random Variable

Suppose we have a situation that matches a Bernoulli experiment (only 2 outcomes: "success" and "failure").

We obtain the outcome "success" with probability p
When random variable X follows a Bernoulli Distribution, we write

$$
X \sim \operatorname{Bern}(p)
$$

- Define a random variable X

$$
X= \begin{cases}1 & \text { Success (S) } \\ 0 & \text { Failure (F) }\end{cases}
$$

Bernoulli Random Variable Cont.

- Probability Mass Function (pmf)

$$
\begin{aligned}
& \text { 1. } \operatorname{Im}(X)=\{0,1\} \\
& \text { 2. } P(X=1)=P(S)=p \\
& P(X=0)=P(F)=1-p
\end{aligned}
$$

The pmf can be written in tabular form:

x	0	1
$p_{X}(x)$	$1-p$	p

The pmf can be written as a function:

$$
p_{X}(x)= \begin{cases}p^{\times}(1-p)^{1-x} & x \in\{0,1\} \\ 0 & \text { otherwise }\end{cases}
$$

Typically, we use the above functional form to describe the probability mass function (pmf) of Bernoulli random variable.

Bernoulli Random Variable Cont.

- Cumulative distribution function (cdf)

$$
F_{X}(t)=P(X \leq t)= \begin{cases}0 & t<0 \\ 1-p & 0 \leq t<1 \\ 1 & 0 \leq t<1\end{cases}
$$

- Expected Value: $E(X)=p$

$$
E(X)=\sum_{x \in\{0,1\}} x P(X=x)=0(1-p)+1(p)=p
$$

- Variance: $\operatorname{Var}(X)=p(1-p)$

Binomial Distribution

Binomial Distribution

Set up: Conduct multiple trials of identical and independent Bernoulli experiments

- Each trial is independent of the other trials
- $P($ Success $)=p$ for each trial

We are interested in the number of success after n trials. The random variable X is

$$
X=" \# \text { of successes in } n \text { trials" }
$$

This random variable X follows a Binomial Distribution

$$
X \sim \operatorname{Bin}(n, p)
$$

where n is the number of trials, and p is the probability of success for each trial.

Binomial Distribution Cont.

Example 2: Flip a coin 10 times, and record the number of heads.
Success $=$ "heads" $; P($ Success $)=p=0.5$

- Define the random variable X

$$
X=" \# \text { of heads in } n \text { trials" }
$$

- The distribution of X is ...

$$
X \sim \operatorname{Bin}(10,0.5)
$$

Derivation of Binomial pmf

- Probability Mass Function (pmf)

$$
\begin{aligned}
& \text { 1. } \operatorname{Im}(X)=\{0,1,2,3,4, \ldots, n\} \\
& \text { 2. } P(X=x)=\text { ? }
\end{aligned}
$$

Recall $P($ Success $)=P(S)=p, P($ Failure $)=P(F)=1-p$
Case: $X=0 \quad$ F \quad F $\quad \cdots$ F
$P(X=0)=(1-p)^{n}$
Case: $X=1$
$P(X=1)=\binom{n}{1} p^{1}(1-p)^{n-1}$
Case: $X=2$
$P(X=2)=\binom{n}{2} p^{2}(1-p)^{n-2}$

Binomial Random Variables

In general, the probability mass function (pmf) of a Binomial R.V can be written as:

$$
p_{X}(x)=\left\{\begin{array}{lc}
\binom{n}{x} p^{x}(1-p)^{n-x} & \text { for } x=0,1,2, \ldots, n \\
0 & \text { otherwise }
\end{array}\right.
$$

- Cumulative distribution function (cdf)

$$
F_{X}(t)=P(X \leq t)=\sum_{x=0}^{\lfloor t\rfloor}\binom{n}{x} p^{x}(1-p)^{n-x}
$$

(Add up the pmfs to obtain the cdf)

- Expected Value: $E(X)=n p$
- Variance: $\operatorname{Var}(X)=n p(1-p)$

IID Random Variables

Properties of IID Random Variables

Independent and identically distributed (iid) random variables have properties that simplify calculations

Suppose Y_{1}, \ldots, Y_{n} are iid random variables

- Since they are identically distributed,

$$
\begin{aligned}
& E\left(Y_{1}\right)=E\left(Y_{2}\right)=\ldots=E\left(Y_{n}\right) \\
& \rightarrow E\left(\sum Y_{i}\right)=\sum E\left(Y_{i}\right)=n E\left(Y_{1}\right) \\
& \operatorname{Var}\left(Y_{1}\right)=\operatorname{Var}\left(Y_{2}\right)=\ldots=\operatorname{Var}\left(Y_{n}\right)
\end{aligned}
$$

- Since they are also independent,

$$
\rightarrow \operatorname{Var}\left(\sum Y_{i}\right)=\sum \operatorname{Var}\left(Y_{i}\right)=n \operatorname{Var}\left(Y_{1}\right)
$$

Working with IID Random Variables

A Binomial random variable, X, is the sum of n independent and identically distributed (iid) Bernoulli random variables, Y_{i}.

Let Y_{i} be a sequence of iid Bernoulli R.V. For $i=1, \ldots, n$,

$$
Y_{i} \stackrel{i i d}{\sim} \operatorname{Bern}(p)
$$

with $E\left(Y_{i}\right)=p$ and $\operatorname{Var}\left(Y_{i}\right)=p(1-p)$. Then,

$$
X=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Bin}(n, p)
$$

Then, we obtain $E(X)$ and $\operatorname{Var}(X)$ using properties of iid R.V.s

$$
\begin{aligned}
E(X) & =n E\left(Y_{1}\right)=n p \\
\operatorname{Var}(X) & =n \operatorname{Var}\left(Y_{1}\right)=n p(1-p)
\end{aligned}
$$

Examples

Binomial Distribution Examples

Example 3: A box contains 15 components that each have a defective rate of 5%. What is the probability that ...

1. exactly 2 out of 15 components are defective?
2. at most 2 components are defective?
3. more than 3 components are defective?
4. more than 1 but less than 4 components are defective?

How should we approach solving these types of problems?
Always start by

1. Defining the random variable
2. Determine the R.V's distribution (and values for the parameters)
3. Use appropriate $\mathrm{pmf} / \mathrm{cdf} / \mathrm{E}(\mathrm{X}) / \operatorname{Var}(\mathrm{X})$ formulas to solve

Binomial Distribution Examples Cont.

Define the R.V: $X=\#$ of defective components
State the Distribution of $X: X \sim \operatorname{Bin}(15,0.05)$
$n=15, p=0.05$

1. What is the probability that exactly 2 out of 15 components are defective?
$P(X=2)=$

Binomial Distribution Examples Cont.

2. What is the probability that at most 2 components are defective?

$$
P(X \leq 2)=
$$

Binomial Distribution Examples Cont.

3. What is the probability that more than 3 components are defective?

Binomial Distribution Examples Cont.

4. What is the probability that more than 1 but less than 4 components are defective?
