Lecture 7

Discrete Distributions: Bernoulli and Binomial Distributions

Manju M. Johny

STAT 330 - Iowa State University

1/17

Discrete Distributions

Discrete Distributions

Common distributions for discrete random variables

- " is distributed" • Bernoulli distribution $X \sim Bern(p)$ parameter
- Binomial distribution

$$X \sim Bin(n, p)$$

Geometric distribution

$$X \sim Geo(p)$$
 Ruyumeter

Poisson distribution

$$X \sim Bin(n, p)$$
 $X \sim Geo(p)$
 $X \sim Pois(\lambda)$
 $X \sim Pois(\lambda)$

We will also discuss joint distributions for 2 or more discrete random variables

2/17

Bernoulli Distribution

Bernoulli Distribution

Bernoulli Experiment: Random experiment with only 2 outcomes:

- Success (S)
- Failure (F)

where P(Success) = P(S) = p for $p \in [0, 1]$

Example 1: (Bernoulli experiments):

- 1. Flip a coin:
- S = heads, F = tails
- 2. Watch stock prices: S = increase, F = decrease
- 3. Cancer screening: S = cancer, F = no cancer

3/17

Working with Bernoulli Random Variable

Suppose we have a situation that matches a Bernoulli experiment (only 2 outcomes: "success" and "failure").

We obtain the outcome "success" with probability p

When random variable X follows a Bernoulli Distribution, we write

p.V
$$X \sim Bern(p)$$

A distributed "

A distributed"

• Define a random variable X

$$X = \begin{cases} 1 & \text{Success (S)} \\ 0 & \text{Failure (F)} \end{cases}$$

Bernoulli Random Variable Cont.

• Probability Mass Function (pmf)

1.
$$Im(X) = \{0, 1\}$$

2.
$$P(X = 1) = P(S) = p$$

 $P(X = 0) = P(F) = 1 - p$

The pmf can be written in tabular form:

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline p_X(x) & 1-p & p \end{array}$$

The pmf can be written as a function:

$$p_X(x) = \left\{ egin{array}{ll} p^x(1-p)^{1-x} & x \in \{0,1\} \ 0 & ext{otherwise} \end{array}
ight.$$

Typically, we use the above functional form to describe the *probability mass function (pmf)* of Bernoulli random variable.

5 / 17

Bernoulli Random Variable Cont.

• Cumulative distribution function (cdf)

Cumulative distribution function (cdf)
$$F_X(t) = P(X \le t) = \begin{cases} 0 & t < 0 \\ 1 - p & 0 \le t < 1 \\ 1 & 0 \le t \le 1 \end{cases}$$

• Expected Value: E(X) = p

$$E(X) = \sum_{x \in \{0,1\}} x P(X = x) = 0(1 - p) + 1(p) = p$$

• Variance:
$$Var(X) = p(1-p)$$

 $E(x^2) = 2x^2 P(X=x) = (0^2)(1-p) + (p)(p) = p$
 $Var(X) = E(x^2) - (EX)^2 = p - p^2 = p(1-p)$

Binomial Distribution

Binomial Distribution

Set up: Conduct multiple trials of <u>identical</u> and <u>independent</u> Bernoulli experiments

- Each trial is independent of the other trials
- P(Success) = p for each trial

We are interested in the <u>number of success after n trials</u>. The random variable X is

X = " # of successes in n trials"

This random variable X follows a Binomial Distribution

 $X \sim Bin(n,p)$ n, p are parameters

mut the distribution
depends on

where n is the number of trials, and p is the probability of success for each trial.

ob n, P, 7/17 my dist. will dr look different.

Binomial Distribution Cont.

Example 2: Flip a coin 10/times, and record the number of heads.

Success = "heads"; P(Success) = p = 0.5

Define the random variable X

$$X =$$
 " # of heads in \mathcal{M} trials"

• The distribution of *X* is . . .

is ...
$$\rho = 0.5$$
 $X \sim Bin(10, 0.5)$
 $n = 10$

8 / 17

Derivation of Binomial pmf

Probability Mass Function (pmf)

1.
$$Im(X) = \{0, 1, 2, 3, 4, ..., n\} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

2. P(X = x) = ?

Recall P(Success) = P(S) = p, P(Failure) = P(F) = 1 - p

$$P(X=0) = (1-p)^n$$

$$P(X = 1) = \binom{n}{1} p^{1} (1 - p)^{n-1}$$

Case:
$$X = 2$$

$$P(X = 2) = \binom{n}{2} p^2 (1 - p)^{n-2}$$

Binomial Random Variables

In general, the *probability mass function (pmf)* of a Binomial R.V can be written as:

$$P(X=x) = p_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{for } x = 0, 1, 2, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

• Cumulative distribution function (cdf)

(Add up the pmfs to obtain the cdf)

• Expected Value:
$$E(X) = np$$

• Variance:
$$Var(X) = np(1-p)$$

10 / 17

(independent & identically distributed)

IID Random Variables

Properties of IID Random Variables

Independent and identically distributed (iid) random variables have properties that simplify calculations

Suppose Y_1, \ldots, Y_n are iid random variables

• Since they are *identically* distributed,

$$E(Y_1) = E(Y_2) = \dots = E(Y_n)$$

$$\rightarrow E(\sum Y_i) = \sum E(Y_i) = nE(Y_1)$$
always since Yi's identical
$$Var(Y_1) = Var(Y_2) = \dots = Var(Y_n)$$

Since they are also independent,

11/17

Working with IID Random Variables

A Binomial random variable, X, is the sum of n independent and identically distributed (iid) Bernoulli random variables, Y_i .

Let Y_i be a sequence of iid Bernoulli R.V. For i = 1, ..., n,

$$Y_i \stackrel{iid}{\sim} Bern(p)$$

with $E(Y_i) = p$ and $Var(Y_i) = p(1-p)$. Then,

$$X = \sum_{i=1}^{n} Y_i \sim Bin(n, p)$$

Then, we obtain E(X) and Var(X) using properties of iid R.V.s

$$E(X) = nE(Y_1) = np$$

$$Var(X) = nVar(Y_1) = np(1 - p)$$

Examples

Binomial Distribution Examples

<u>Example 3:</u> A box contains 15 components that each have a defective rate of 5%. What is the probability that ...

- 1. exactly 2 out of 15 components are defective?
- 2. at most 2 components are defective?
- 3. more than 3 components are defective?
- 4. more than 1 but less than 4 components are defective?

How should we approach solving these types of problems?

Always start by

- 1. Defining the random variable
- 2. Determine the R.V's distribution (and values for the parameters)
- 3. Use appropriate pmf/cdf/E(X)/Var(X) formulas to solve

Binomial Distribution Examples Cont.

1. What is the probability that exactly 2 out of 15 components are defective?

are defective:

$$P(X = 2) = P_{X}(2) = {\binom{15}{2}} (0.05)^{2} (0.95)^{15-2}$$

$$= {\binom{15}{2}} (0.05)^{2} (0.95)^{13}$$

$$= {\frac{15!}{2! \cdot 13!}} (0.05)^{2} (0.95)^{13}$$

$$= (0.05) (0.05)^{2} (0.95)^{13}$$

$$= 0.1348$$

14 / 17

Binomial Distribution Examples Cont.

2. What is the probability that at most 2 components are

(Using pmf defective?

$$P(X \le 2) = P_{X}(0) + P_{X}(1) + P_{X}(2)$$

$$= {15 \choose 0} (0.05)^{0} (0.95)^{15}$$

$$+ {15 \choose 1} (0.05)^{1} (0.95)^{15-1}$$

$$+ {15 \choose 2} (0.05)^{2} (0.95)^{15-2}$$

$$= 0.9638$$

(using cdf)
$$P(X \le Z) = F_X(Z) = 0.9638$$
 (using Appendix A)

Binomial Table

Binomial Distribution Examples Cont.

3. What is the probability that more than 3 components are defective? $P(X > 3) = ? = 1 - P(X \le 3)$

(using pmf)
$$P(X \le 3) = P_X(0) + P_X(1) + P_X(2) + P_X(3)$$

 $= \binom{15}{0} (0.05)^0 (0.95)^{15}$
 $+ \binom{15}{10} (0.05)^1 (0.95)^{13}$
 $+ \binom{15}{2} (0.05)^2 (0.95)^{13}$
 $+ \binom{15}{3} (0.05)^3 (0.95)^{12}$
 $= 0.9945$
 $\Rightarrow P(X > 3) = 1 - P(X \le 3) = 1 - 0.9945 = 0.0055$
(using cdf) $P(X \le 3) = F_X(3) = 0.9945$
 $\Rightarrow P(X > 3) = 1 - P(X \le 3) = 1 - 0.9945 = 0.0055$
 $\Rightarrow P(X > 3) = 1 - P(X \le 3) = 1 - 0.9945 = 0.0055$

Binomial Distribution Examples Cont.

4. What is the probability that more than 1 but less than 4 components are defective? P(1 < X < 4) = ?

(using pmf)
$$P(1< X < 4) = P(X=2) + P(X=3)$$

= $P(2) + P(3)$
= $P(3) = P(3) = 0.1655$

(Wing cdf)
$$P(12\times24) = P(\times24) - P(\times1)$$

 $= P(\times23) - P(\times1)$
 $= F_{\times}(3) - F_{\times}(1)$ Appendix A
To use CDF method, $= 0.9945 - 0.8290$ Psinomial
We have to Write probabilies $= 0.1655$

w/ " =" SIGN.

CDF table gives P(X = t)

17 / 17