Lecture 8

Discrete Distributions: Geometric and Poisson Distributions

Manju M. Johny

STAT 330 - Iowa State University

1/15

Geometric Distribution

Geometric Distribution

Set up:

- Experiment where each trial is Bernoulli (only 2 outcomes) with P(success) = p
- Repeat the trials until you obtain the first success.

$$\underline{F} \underline{F} \underline{F} \underline{F} \cdots \underline{F} \underline{S}$$

$$X =$$
 " # of trials until first success" (including 4+ success)

This random variable X follows a Geometric Distribution

This random variable
$$X$$
 follows a Geometric Distribution is distributed
$$X \sim Geo(p) \quad \text{parameter} \quad P = P(Sucess)$$
 where p is the probability of success for each trial.

2/15

Geometric Random Variable

• Probability Mass Function (pmf)

1.
$$Im(X) = \{1, 2, 3, 4, \dots, \} = \mathbb{N}$$

2.
$$P(X = x) = (1 - p)^{x-1}p$$

$$p_X(x) = (1-p)^{x-1}p$$
 for $x = 1, 2, 3, ...$

• Cumulative distribution function (cdf)

full uses success distribution function (cdf)

$$F_X(t) = P(X \le t) = 1 - (1 - p)^{\lfloor t \rfloor}$$

$$L3.61 = 3$$

$$L3.21 = 3$$

$$L5.9991 = 5$$

Why?

• $P(X > t) = (1 - p)^{\lfloor t \rfloor}$ because this is the probability that the first |t| trials are failures

•
$$P(X \le t) = 1 - P(X > t) = 1 - (1 - p)^{\lfloor t \rfloor}$$

Geometric Random Variable Cont.

• Expected Value

$$E(X) = \sum_{x=1}^{\infty} x(1-p)^{x} p = \dots = \frac{p}{(1-[1-p])^{2}} \neq \frac{1}{p}$$

Variance

$$Var(X) = \sum_{i=1}^{\infty} \left(i - \frac{1}{p}\right)^2 (1-p)^i p = \cdots = \underbrace{\frac{1-p}{p^2}}$$

• "Memoryless" Property of Geometric Dist.

$$P(X \ge i + j | X \ge i) = P(X \ge j)$$
 for $i, j = 0, 1, 2, ...$

4/15

Geometric Distribution Examples

Geometric Distribution Examples

 $P = \frac{\text{Example 1:}}{P(\text{Head})} = 0.3. \text{ We flip a coin until we get our first head, and stop flipping once we obtain the head.}$ P = P(success) = P(Heads) = 0.3

What is the probability that ...

- 1. the first head occurs on the third flip?
- 2. we get the first head before the third flip?
- 3. we have to flip the coin at least 3 times, but at most 7 times to get the first head?
- 4. What is the expected number of flips until we obtain the first head?
- 5. What is the variance?

5 / 15

Geometric Distribution Examples

Start by defining the R.V and stating it's distribution.

1. What is the probability that the first head occurs on the third $F = \frac{5}{5}$ flip?

$$P(Y=3) = (1-0.3)^{3-1} (0.3)$$

$$= (0.7)^{2} (0.3)$$

$$= 0.147$$

Geometric Distribution Examples

2. What is the probability that we get the first head before the third flip? P(1 < 3) = 3.

Using PMF:
$$P(Y<3) = P(Y\leq2) = P_Y(1) + P_Y(2)$$

= 0.3 + (1-0.3)(0.3)
= 0.3 + (0.7)(0.3)
= 0.51

Using CDF:
$$P(Y < 3) = P(Y \le 2) = F_Y(2)$$

= $1 - (1 - 0.3)^2$
= 0.51

7 / 15

Geometric Distribution Examples

3. What is the probability that we have to flip the coin at least 3 times, but at most 7 times? $P(3 \le Y \le 7) = ?$

Using PMF:
$$P(3 \le Y \le 7) = P_Y(3) + P_Y(4) + P_Y(5) + P_Y(6) + P_Y(7)$$

= 0.4076

Using CDF:
$$P(3 \le Y \le 7) = P(Y \le 7) - P(Y \le 3)$$

= $P(Y \le 7) - P(Y \le 2)$
= $F_Y(7) - F_Y(7)$
= $[1 - (1 - 0.3)^7] - [1 - (1 - 0.3)^7]$

- 4. What is the expected value? = 0.9176 0.51 = 0.4076 $E(Y) = \frac{1}{100} = \frac{1}{100} = 3.33$
- 5. What is the variance? $Var(Y) = \frac{1-P}{P^2} = \frac{1-0.3}{0.3^2} = 7.78$

8 / 15

Poisson Distribution

Poisson Distribution

Set up: The Poisson distribution is used to model the number of ("rare") events occurring in a fixed interval of time.

Examples of Poisson R.Vs

- ullet Y=# of meteorites that strike Earth in a year
- ullet Z=# of patients arriving to emergency room from 10-11 pm

Define the random variable

X = "# of events occurring during an interval"

This random variable X follows a Poisson Distribution
$$X \sim Pois(\lambda)$$
 "lambda"

where $\lambda > 0$ is called the rate parameter

Poisson R.V. Summary

• Probability Mass Function (pmf)

$$\mathcal{P}(\chi = x) = p_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 for $x = 0, 1, 2, 3, ...$ where $\lambda > 0$ is the rate parameter.

• Cumulative Distribution Function (cdf)

$$F_X(t) = P(X \le t) = \sum_{x=0}^{\lfloor t \rfloor} p_X(x)$$

- Expected Value: $E(X) = \lambda$
- Variance: $Var(X) = \lambda$

10 / 15

Poisson Distribution Examples

Poisson Distribution Examples

Example 2: Suppose the number of customers entering West Street Deli can be modeled using a Poisson distribution. Customers enter the deli at an average rate of (10) customers every (10) minutes rate during the lunch rush.

Between 12pm and 12:10pm today, what is the probability that . . .

- exactly 3 customers enter?
- 2. at most 3 customers enter?
- 3. at least 4 customers enter?
- 4. Between 8 and 10 customers enter? (inclusive)
- 5. What is the expected value of the random variable?
- 6. What is the variance of the random variable?

11 / 15

Poisson Distribution Examples

 $P(X=3) = P_X(3) = \frac{e^{-10}(10)^3}{3!} = 0.00757$ CDF

 $F_{X}(t) = P(X \leq t)$ = $\sum_{k=1}^{k+1} P_{X}(x)$

Poisson Table

Poisson Distribution Examples

2. What is the probability that at most 3 customers enter

Appendix

USING

$$P(X \le 3) = F_X(3) = 0.0103$$

(From
Poisson
Table

OV

$$P(X \le 3) = P(X=0) + P(X=1) + P(X=2) + P(X=3)$$

$$= \frac{e^{-10}(10)^{2}}{0!} + \frac{e^{-10}(10)^{2}}{1!} + \frac{e^{-10}(10)^{2}}{2!} + \frac{e^{-10}(10)^{3}}{3!}$$

13 / 15

Poisson Distribution Examples

3. What is the probability that at least 4 customers enter?

$$P(X \ge 4) = 1 - P(X < 4)$$

= $1 - P(X \le 3)$
= $1 - F_X(3)$
= $1 - 0.0103$
= 0.9897

Poisson Distribution Examples

4. What is the probability that between 8 and 10 customers enter (inclusive)

$$P(8 \le X \le 10) = P(X=8) + P(X=9) + P(X=10)$$

$$= \frac{e^{-10}(10)^8}{8!} + \frac{e^{-10}(10)^9}{9!} + \frac{e^{-10}(10)^{10}}{10!}$$

$$= 0.3628$$

USING

$$P(8 \le X \le 10) = P(X \le 10) - P(X \le 8)$$

$$= P(X \le 10) - P(X \le 7)$$

$$= F_{X}(10) - F_{X}(7)$$

$$= 0.5830 - 0.2202 = 0.3628$$

5. What is the expected value of the random variable?

$$E(X) = \lambda = 10$$

6. What is the variance of the random variable?

$$Var(X) = \lambda = 10$$

15 / 15